面包小麦幼苗根系相关性状的多方法遗传剖析

IF 4.4 1区 农林科学 Q1 AGRONOMY
Naicui Wei, Yuqiong Hao, Jinbo Tao, Jiajia Zhao, Bangbang Wu, Ling Qiao, Xiaohua Li, Xingwei Zheng, Juanling Wang, Jun Zheng
{"title":"面包小麦幼苗根系相关性状的多方法遗传剖析","authors":"Naicui Wei, Yuqiong Hao, Jinbo Tao, Jiajia Zhao, Bangbang Wu, Ling Qiao, Xiaohua Li, Xingwei Zheng, Juanling Wang, Jun Zheng","doi":"10.1007/s00122-025-04847-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>Several quantitative trait loci (QTL) and structural chromosome variations (SCVs) related to seedling root traits were identified using multiple methods, which provided valuable insights to assist breeding efforts in wheat. The root system of wheat affects water and fertilizer use efficiency, stress tolerance, and agronomic traits. Using association analysis and linkage mapping, QTL associated with 11 seedling-stage root traits were identified with single nucleotide polymorphisms (SNPs) and SCVs under both hydroponic nutrient solution culture experiment (NCE) and vermiculite culture experiment (VCE). Except for maximum root length (MRL), the root traits of seedlings under NCE and VCE differed significantly. Root fresh weight (RFW) and root dry weight (RDW) were significantly correlated with most agronomic traits and grain yield. Identification of RFW and RDW by NCE might provide a reference basis for VCE. Co-localization analysis revealed that NCE and VCE simultaneously detected SNP-loci viz. QRdw.sxau-6A, QRd.sxau-1B.2, and QDw.sxau-6A (5.56-8.76% of R<sup>2</sup>). The SCV-loci Mr1B-3, Mr3A-3 and Mr3A-4 were detected in both NCE and VCE (4.74-9.07% of R<sup>2</sup>). Furthermore, QRdw.sxau-6A, QSfw.sxau-6A and QRd.sxau-4A were detected using the mixed linear model (MLM), 3 Variance-component multi-locus random-SNP-effect Mixed Linear Mode (3VmrMLM) and rrBLUP. In the association panel, SNPs and SCVs co-localized to 14 MTAs, of which Mr5A-6 and QRd.sxau-5A were significantly associated with root diameter (RD). The association panel and doubled haploid (DH) population co-located 10 QTL, of which QDw.sxau-1D was stably detected. Finally, QDw.sxau-6A and Mg6A-9 overlapped in same genomic location containing candidate genes TraesCS6A02G372300, TraesCS6A02G382900 and TraesCS6A02G365100. The present study contributes novel insights into the genetics of root architecture in wheat.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 3","pages":"66"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic dissection for seedling root-related traits using multiple-methods in bread wheat (Triticum aestivum L.).\",\"authors\":\"Naicui Wei, Yuqiong Hao, Jinbo Tao, Jiajia Zhao, Bangbang Wu, Ling Qiao, Xiaohua Li, Xingwei Zheng, Juanling Wang, Jun Zheng\",\"doi\":\"10.1007/s00122-025-04847-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Key message: </strong>Several quantitative trait loci (QTL) and structural chromosome variations (SCVs) related to seedling root traits were identified using multiple methods, which provided valuable insights to assist breeding efforts in wheat. The root system of wheat affects water and fertilizer use efficiency, stress tolerance, and agronomic traits. Using association analysis and linkage mapping, QTL associated with 11 seedling-stage root traits were identified with single nucleotide polymorphisms (SNPs) and SCVs under both hydroponic nutrient solution culture experiment (NCE) and vermiculite culture experiment (VCE). Except for maximum root length (MRL), the root traits of seedlings under NCE and VCE differed significantly. Root fresh weight (RFW) and root dry weight (RDW) were significantly correlated with most agronomic traits and grain yield. Identification of RFW and RDW by NCE might provide a reference basis for VCE. Co-localization analysis revealed that NCE and VCE simultaneously detected SNP-loci viz. QRdw.sxau-6A, QRd.sxau-1B.2, and QDw.sxau-6A (5.56-8.76% of R<sup>2</sup>). The SCV-loci Mr1B-3, Mr3A-3 and Mr3A-4 were detected in both NCE and VCE (4.74-9.07% of R<sup>2</sup>). Furthermore, QRdw.sxau-6A, QSfw.sxau-6A and QRd.sxau-4A were detected using the mixed linear model (MLM), 3 Variance-component multi-locus random-SNP-effect Mixed Linear Mode (3VmrMLM) and rrBLUP. In the association panel, SNPs and SCVs co-localized to 14 MTAs, of which Mr5A-6 and QRd.sxau-5A were significantly associated with root diameter (RD). The association panel and doubled haploid (DH) population co-located 10 QTL, of which QDw.sxau-1D was stably detected. Finally, QDw.sxau-6A and Mg6A-9 overlapped in same genomic location containing candidate genes TraesCS6A02G372300, TraesCS6A02G382900 and TraesCS6A02G365100. The present study contributes novel insights into the genetics of root architecture in wheat.</p>\",\"PeriodicalId\":22955,\"journal\":{\"name\":\"Theoretical and Applied Genetics\",\"volume\":\"138 3\",\"pages\":\"66\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Genetics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s00122-025-04847-6\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-025-04847-6","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

通过多种方法鉴定出与小麦幼苗根系性状相关的数量性状位点(QTL)和结构染色体变异(scv),为小麦育种工作提供了有价值的见解。小麦根系影响着水肥利用效率、抗逆性和农艺性状。利用关联分析和连锁定位技术,在水培营养液培养(NCE)和蛭石培养(VCE)条件下,鉴定了11个苗期根系性状的单核苷酸多态性(snp)和scv。除最大根长(MRL)外,NCE和VCE处理下幼苗根系性状差异显著。根鲜重(RFW)和根干重(RDW)与大部分农艺性状和籽粒产量呈极显著相关。NCE对RFW和RDW的识别可为VCE提供参考依据。共定位分析表明,NCE和VCE同时检测到snp位点,即QRdw。sxau-6A QRd.sxau-1B。2、QDw。sau - 6a (R2的5.56-8.76%)。在NCE和VCE中均检测到scv基因座Mr1B-3、Mr3A-3和Mr3A-4 (R2为4.74-9.07%)。此外,QRdw。sxau-6A QSfw。sau - 6a和QRd。采用混合线性模型(MLM)、3方差-分量多位点随机- snp效应混合线性模型(3VmrMLM)和rrBLUP检测sau - 4a。在关联组中,snp和scv共定位于14个mta,其中Mr5A-6和QRd。sau - 5a与根直径(RD)显著相关。关联群体与双单倍体(DH)群体共定位10个QTL,其中QDw。sxau-1D被稳定检测到。最后,QDw。mg6a和Mg6A-9在含有候选基因TraesCS6A02G372300、TraesCS6A02G382900和TraesCS6A02G365100的相同基因组位置重叠。本研究为小麦根系构型的遗传学研究提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic dissection for seedling root-related traits using multiple-methods in bread wheat (Triticum aestivum L.).

Key message: Several quantitative trait loci (QTL) and structural chromosome variations (SCVs) related to seedling root traits were identified using multiple methods, which provided valuable insights to assist breeding efforts in wheat. The root system of wheat affects water and fertilizer use efficiency, stress tolerance, and agronomic traits. Using association analysis and linkage mapping, QTL associated with 11 seedling-stage root traits were identified with single nucleotide polymorphisms (SNPs) and SCVs under both hydroponic nutrient solution culture experiment (NCE) and vermiculite culture experiment (VCE). Except for maximum root length (MRL), the root traits of seedlings under NCE and VCE differed significantly. Root fresh weight (RFW) and root dry weight (RDW) were significantly correlated with most agronomic traits and grain yield. Identification of RFW and RDW by NCE might provide a reference basis for VCE. Co-localization analysis revealed that NCE and VCE simultaneously detected SNP-loci viz. QRdw.sxau-6A, QRd.sxau-1B.2, and QDw.sxau-6A (5.56-8.76% of R2). The SCV-loci Mr1B-3, Mr3A-3 and Mr3A-4 were detected in both NCE and VCE (4.74-9.07% of R2). Furthermore, QRdw.sxau-6A, QSfw.sxau-6A and QRd.sxau-4A were detected using the mixed linear model (MLM), 3 Variance-component multi-locus random-SNP-effect Mixed Linear Mode (3VmrMLM) and rrBLUP. In the association panel, SNPs and SCVs co-localized to 14 MTAs, of which Mr5A-6 and QRd.sxau-5A were significantly associated with root diameter (RD). The association panel and doubled haploid (DH) population co-located 10 QTL, of which QDw.sxau-1D was stably detected. Finally, QDw.sxau-6A and Mg6A-9 overlapped in same genomic location containing candidate genes TraesCS6A02G372300, TraesCS6A02G382900 and TraesCS6A02G365100. The present study contributes novel insights into the genetics of root architecture in wheat.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
7.40%
发文量
241
审稿时长
2.3 months
期刊介绍: Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信