Akash Anand Verma, D. K. Dwivedi, Pooja Lohia, Surbhi Agarwal, Upendra Kulshrestha, Manish Kumar, Rahul Pandey
{"title":"Enhancing Efficiency of Lead-Free Cs2TiIxBr6-x Perovskite Solar Cells Through Linear and Parabolic Grading Strategies: Toward 31.18% Efficiency","authors":"Akash Anand Verma, D. K. Dwivedi, Pooja Lohia, Surbhi Agarwal, Upendra Kulshrestha, Manish Kumar, Rahul Pandey","doi":"10.1002/pip.3895","DOIUrl":"https://doi.org/10.1002/pip.3895","url":null,"abstract":"<div>\u0000 \u0000 <p>The most amazing environmentally friendly energy source is solar energy, which can be captured with the aid of photovoltaic (PV) cells. Perovskite solar cells (PSCs) that are hybrid (organic–inorganic) have demonstrated remarkable PV ability. The advantages of halide-based perovskite are numerous and include cheap cost, high efficiency, and simplicity in fabrication. Due to their poisonous nature, lead (Pb)-based PSCs often pose a concern to the environment. They also have other drawbacks, such as stability problems, problems with scalability, and health risks associated with Pb exposure. Thus, the primary intent of this study is to examine the Pb-free, inorganic titanium-based perovskite complex Cs<sub>2</sub>TiI<sub>x</sub>Br<sub>6-x</sub>, which serves as the active layer. When compared with other elements, titanium is nontoxic, strong, affordable, and easily accessible. To improve the efficiency of lead-free (Au/CuSbS<sub>2</sub>/Cs<sub>2</sub>TiI<sub>x</sub>Br<sub>6-x</sub>/CdS/FTO) device structure, both linear and parabolic grading methods are used in the simulation. The perovskite composition Cs<sub>2</sub>TiI<sub>x</sub>Br<sub>6-x</sub> is a mixed halide system, with different amounts of iodine (I) and bromine (Br) ions integrated into the crystal lattice. Within the halide system, “x” indicates the percentage of iodide ions that replace bromide ions. Light absorption and energy conversion efficiency in solar cells may be maximized by fine tuning the material's band gap by varying “x,” which can range from 0 to 6. When the active layer is graded linearly, the band gap is adjusted by adjusting the composition <i>x</i>, which ranges from 0 to 6, throughout the active layer's thickness. The bending factor changes from 0 to 1 in the case of parabolic grading of the Cs<sub>2</sub>TiI<sub>x</sub>Br<sub>6-x</sub> layer, indicating an enhancement in the device's PCE as a result of high wavelength photon absorption. Our simulations show a significant improvement in PCE, with an astounding result of 31.18% for parabolic grading, a 7.93% increase above PCE from linear grading, which is 28.89%. Other noteworthy metrics that exhibit exceptional outcomes include J<sub>SC</sub> 34.36 mA.cm<sup>−2</sup>, FF 86.81%, and V<sub>OC</sub> 1.0452 V. The stability in the output of the device in the realistic temperature range confirms the highly stable nature of the proposed PSC device. These results show how effectively our approach improves the efficiency and effectiveness of Pb-free PSC's. As we are interested in this realistic environmental temperature range of the whole world, we proposed that Cs<sub>2</sub>TiI<sub>x</sub>Br<sub>6-x</sub>-based PSCs are highly suitable and stable for the real-time experiment, which is the need of PSCs nowadays.</p>\u0000 </div>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 5","pages":"599-615"},"PeriodicalIF":8.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143762333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quiterie Emery, Lea Dagault, Mark Khenkin, Nikoleta Kyranaki, Wander Max Bernardes de Araújo, Ulas Erdil, Matthias Demuylder, Stephane Cros, Rutger Schlatmann, Bernd Stannowski, Carolin Ulbrich
{"title":"Tips and Tricks for a Good Encapsulation for Perovskite-Based Solar Cells","authors":"Quiterie Emery, Lea Dagault, Mark Khenkin, Nikoleta Kyranaki, Wander Max Bernardes de Araújo, Ulas Erdil, Matthias Demuylder, Stephane Cros, Rutger Schlatmann, Bernd Stannowski, Carolin Ulbrich","doi":"10.1002/pip.3888","DOIUrl":"https://doi.org/10.1002/pip.3888","url":null,"abstract":"<p>Encapsulation is a critical topic to ensure the successful implementation of perovskite photovoltaics. Recently, vacuum lamination has been shown as a promising approach that combines compatibility with current industrial processes in conventional photovoltaic (PV) manufacturing and suitability to achieve good results with perovskites. Here, we explore some of the attractive encapsulation materials in terms of their ability to prevent moisture ingress, withstand elevated temperatures, and have suitable mechanical properties to avoid thermomechanical issues. We utilized the previously suggested concept of the “perovskite test,” an optical test with simple sample fabrication, for evaluating encapsulation quality and validated the findings with the full solar cell stack. Unsurprisingly, encapsulants without an edge sealant showed insufficient protection from moisture. Ionomer in combination with butyl edge seal showed the best barrier properties; however, this stack led to rapid delamination of the cell layers in thermal cycling tests. Configuration with only edge sealant does not have such an issue in principle (no mechanical stress applied), but an absence of the polymer in the stack is unfavorable in terms of optical design and sometimes showed perovskite degradation that we assign to trapped moisture in the butyl itself. Polyolefin with butyl edge sealant is not free of degradation but showed the most promising compromise by passing the damp heat test and showing fewer issues in the thermal cycling experiments. In general, our material study and optimization presented in this manuscript show that a holistic approach is needed when choosing an optimal encapsulation scheme for perovskite devices.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 4","pages":"551-559"},"PeriodicalIF":8.0,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3888","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143555190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Photovoltaics Literature Survey (No. 196)","authors":"Ziv Hameiri","doi":"10.1002/pip.3886","DOIUrl":"https://doi.org/10.1002/pip.3886","url":null,"abstract":"","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 2","pages":"372-377"},"PeriodicalIF":8.0,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143110338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kai Zhang, Oleksandr Mashkov, Muhammad Ainul Yaqin, Bernd Doll, Andreas Lambertz, Karsten Bittkau, Weiyuan Duan, Ian Marius Peters, Christoph J. Brabec, Uwe Rau, Kaining Ding
{"title":"Damp-Heat–Induced Degradation of Lightweight Silicon Heterojunction Solar Modules With Different Transparent Conductive Oxide Layers","authors":"Kai Zhang, Oleksandr Mashkov, Muhammad Ainul Yaqin, Bernd Doll, Andreas Lambertz, Karsten Bittkau, Weiyuan Duan, Ian Marius Peters, Christoph J. Brabec, Uwe Rau, Kaining Ding","doi":"10.1002/pip.3880","DOIUrl":"https://doi.org/10.1002/pip.3880","url":null,"abstract":"<p>Lightweight photovoltaic applications are essential for diversifying the solar energy supply. This opens up vast new scenarios for solar modules and significantly boosts the capacity of renewable energy. To ensure high efficiency and stability of the solar modules, several challenges need to be overcome. Degradation due to elevated temperature and/or humidity is a critical concern for silicon heterojunction (SHJ) solar modules. Here, we investigated the stability and degradation mechanism of encapsulated cells with lightweight configurations where the cells are based on three different types of transparent-conductive oxide (TCO): indium tin oxide (ITO), aluminum-doped zinc oxide (AZO), and a combination of ITO/AZO/ITO under humid and thermal environmental conditions. A damp heat (DH) test at a temperature of 85°C and relative humidity (RH) of 85% was performed on lightweight modules for 1000 h. Our results show that AZO is the most susceptible to DH degradation. The AZO film was damaged by the combined effects of moisture ingress and delamination of the interconnection foil, resulting in a decrease in the conductivity of the AZO film, leading to a dramatic increase in <i>R</i><sub>s</sub> and a decrease in <i>FF</i> of the modules. Consequently, moisture has a greater chance of percolating through the damaged AZO layer into the a-Si:H passivation layer, causing passivation degradation, which leads to an increase in recombination, resulting in a decrease in <i>V</i><sub>oc</sub> of the modules. In particular, after capping the AZO film with an ITO film, the efficiency loss of the ITO/AZO/ITO module was significantly reduced. This suggests that the ITO film could be a promising protective capping layer for the AZO-based solar cells.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 4","pages":"541-550"},"PeriodicalIF":8.0,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3880","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143555096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yali Ou, Haojiang Du, Na Lin, Zunke Liu, Wei Liu, Mingdun Liao, Zhenhai Yang, Shihua Huang, Yuheng Zeng, Jichun Ye
{"title":"Boron-Doped Polysilicon Passivating Contacts Achieving a Single-Sided J0 of 4.0 fA/cm2 Through a Two-Step Oxidation Process","authors":"Yali Ou, Haojiang Du, Na Lin, Zunke Liu, Wei Liu, Mingdun Liao, Zhenhai Yang, Shihua Huang, Yuheng Zeng, Jichun Ye","doi":"10.1002/pip.3884","DOIUrl":"https://doi.org/10.1002/pip.3884","url":null,"abstract":"<div>\u0000 \u0000 <p>Tunnel oxide passivating contacts with boron-doped polysilicon (i.e., <i>p</i>-type TOPCon) hold substantial potential for application in the devices with higher efficiency, that is, back-junction (BJ) or all-back-contact (<span>BC</span>) solar cells. However, achieving excellent passivation for <i>p</i>-type TOPCon remains a challenge. In this study, we propose a two-step oxidation (TSO) method using low-temperature oxidated silicon oxide (SiO<sub>x</sub>) with a post-nitrous oxide/hydrogen plasma (N<sub>2</sub>O/H<sub>2</sub>) treatment to prepare high-quality ultrathin SiO<sub>x</sub> and achieve highly passivated <i>p</i>-type TOPCon. Through optimization of plasma treatment pressure and annealing conditions, we achieve excellent passivation and contact properties of double-sided <i>p</i>-type TOPCon, with an implied open-circuit voltage (<i>iV</i><sub>oc</sub>) of 740 mV, marking the highest publicly reported value for <i>p</i>-type TOPCon. Additionally, we achieve a single-sided saturation recombination current density (<i>J</i><sub>0,s</sub>) of 4.0 fA/cm<sup>2</sup> and a contact resistivity of 22 mΩ cm<sup>2</sup>. Semi-finished back-junction solar cell incorporating TSO-SiO<sub>x</sub> exhibits excellent passivation performance with an <i>iV</i><sub>oc</sub> of 744 mV, demonstrating the feasibility of device applications. The two-step oxidation method proposed in this work enhances the passivation performance of <i>p</i>-type TOPCon, offering a technique with significant potential for industrial applications in preparing high-quality <i>p</i>-type TOPCon.</p>\u0000 </div>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 4","pages":"531-540"},"PeriodicalIF":8.0,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143554999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hanbo Tang, Hao Lin, Genshun Wang, Qiao Su, Tingting Wang, Chaowei Xue, Liang Fang, Xixiang Xu, Can Han, Pingqi Gao
{"title":"Understanding Localized Current Leakage in Silicon-Based Heterojunction Solar Cells","authors":"Hanbo Tang, Hao Lin, Genshun Wang, Qiao Su, Tingting Wang, Chaowei Xue, Liang Fang, Xixiang Xu, Can Han, Pingqi Gao","doi":"10.1002/pip.3882","DOIUrl":"https://doi.org/10.1002/pip.3882","url":null,"abstract":"<div>\u0000 \u0000 <p>Current leakage through localized stacked structures, comprising opposite types of carrier-selective transport layers, is a prevalent issue in silicon-based heterojunction solar cells. Nevertheless, the behavior of this leakage region remains unclear, leading to a lack of guidance for structural design, material selection and process sequence control, thereby causing fluctuations of device performance. This study elucidates current-voltage characteristics, influential factors, and underlying carrier transport mechanism of the leakage region with different stacking sequences and explores their impact on various configurations of solar cells. Characteristics of the leakage region resembling Esaki diodes or reverse diodes are revealed, along with the bias conditions of the leakage region at different locations across the solar cell. The findings suggest that modulating the behavior of the leakage region is feasible for improving device performance or serving specific purposes. This work provides guidance for the design and assessment of current leakage in the edge region of front and back contact cells, in the gap region of conventional back-contacted cells, as well as in the tunneling region of tunneling back-contacted cells and tandem cells.</p>\u0000 </div>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 4","pages":"522-530"},"PeriodicalIF":8.0,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143555188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PHOTOVOLTAICS LITERATURE SURVEY (No. 195)","authors":"Ziv Hameiri","doi":"10.1002/pip.3874","DOIUrl":"https://doi.org/10.1002/pip.3874","url":null,"abstract":"","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 1","pages":"245-250"},"PeriodicalIF":8.0,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bilayered Phosphorus-Doped Polysilicon Passivating Contact Structures for TOPCon Solar Cell Applications","authors":"Wenhao Chen, Jiale Cao, Weiqing Liu, Ligang Yuan, Yuanyuan Yu, Xinxin Liu, Yimao Wan","doi":"10.1002/pip.3879","DOIUrl":"https://doi.org/10.1002/pip.3879","url":null,"abstract":"<div>\u0000 \u0000 <p>The use of single-layer polysilicon (poly-Si) in tunnel oxide passivated contact (TOPCon) structures has demonstrated excellent passivation and contact performance. However, commercial TOPCon solar cell fabrication requires screen-printing and cofiring techniques for electrode preparation. The single-layer structure is less efficient at preventing metal atoms in the electrode paste from penetrating the silicon bulk. Furthermore, the uniformity of doping concentration and crystallinity within this structure poses challenges as it fails to optimally meet the intricate requirements for achieving superior performance in terms of passivation, contact, and mitigating parasitic absorption. In this study, the deposition process of the amorphous silicon (a-Si) precursor layer using an in-line magnetron sputtering system incorporated an additional plasma oxidation step, resulting in a bilayer poly-Si structure with the newly introduced SiO<sub>x</sub> acting as a partition. Detailed investigations were conducted into the passivation quality, contact resistivity, crystallinity, and the distribution of critical atoms in the bilayer structure. Subsequently, the bilayer configuration was utilized in the manufacturing process of TOPCon solar cells. These efforts resulted in a notable enhancement in open-circuit voltage (<i>V</i><sub>oc</sub>) and short-circuit current (<i>I</i><sub>sc</sub>), leading to a 0.06% efficiency improvement, based on the average performance of ~200 cells per group.</p>\u0000 </div>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 4","pages":"513-521"},"PeriodicalIF":8.0,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143555117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Evgenii Sovetkin, Michael Gordon, Neel Patel, Andreas Gerber, Angèle Reinders, Robby Peibst, Bart E. Pieters
{"title":"Nonuniformity of Irradiation Distribution on Vehicles' Bodies","authors":"Evgenii Sovetkin, Michael Gordon, Neel Patel, Andreas Gerber, Angèle Reinders, Robby Peibst, Bart E. Pieters","doi":"10.1002/pip.3876","DOIUrl":"https://doi.org/10.1002/pip.3876","url":null,"abstract":"<p>Nonuniformity of irradiation in photovoltaic (PV) modules causes a current mismatch in the cells, which leads to energy losses. In the context of vehicle-integrated PV (VIPV), the nonuniformity is typically studied for the self-shading effect caused by the curvature of modules. This study uncovers the impact of topography on the distribution of sunlight on vehicle surfaces, focusing on two distinct scenarios: the flat-surface cargo area of a small delivery truck and the entire body of a commercial passenger vehicle. We employ a commuter pattern driving profile in Germany and a broader analysis incorporating random sampling of various road types and locations across 17,000 km<sup>2</sup> in Europe and 59,000 km<sup>2</sup> in the United States using LIDAR-derived topography and OpenStreetMap data. Our findings quantify irradiation inhomogeneity patterns shaped by the geographic landscape, road configurations, urban planning, and vegetation. The research identifies topography as the primary factor affecting irradiation distribution uniformity, with the vehicle's surface orientation and curvature serving as secondary influencers. The most significant variation occurs on vertical surfaces of the vehicle in residential areas, with the lower parts receiving up to 35% less irradiation than the top part of the car. These insights may be used to improve the design and efficiency of vehicle-integrated photovoltaic systems, optimizing energy capture in diverse environmental conditions.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 3","pages":"489-505"},"PeriodicalIF":8.0,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3876","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143380563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tianyue Wang, Yingrui Sui, Chang Miao, Yue Cui, Zhanwu Wang, Lili Yang, Fengyou Wang, Xiaoyan Liu, Bin Yao
{"title":"Synergistic Effect of Ag, Sb Dual-Cation Substitution on Cu2ZnSn (S, Se)4 High-Efficiency Solar Cells","authors":"Tianyue Wang, Yingrui Sui, Chang Miao, Yue Cui, Zhanwu Wang, Lili Yang, Fengyou Wang, Xiaoyan Liu, Bin Yao","doi":"10.1002/pip.3875","DOIUrl":"https://doi.org/10.1002/pip.3875","url":null,"abstract":"<div>\u0000 \u0000 <p>The poor crystal quality inside an absorber layer and the presence of various harmful defects are the main obstacles restricting the properties of Cu<sub>2</sub>ZnSn (S, Se)<sub>4</sub> (CZTSSe) thin-film solar cells. Cation doping has attracted considerable research attention as a viable strategy to overcome this challenge. In this paper, based on Sb-substituted CZTSSe system, we prove that Ag partially substituting Cu may be a feasible strategy. After a series of characterization of the films, it was discovered that the crystal quality and crystallinity of the films were further improved by introducing Ag into Cu<sub>2</sub>Zn(Sb, Sn) (S, Se)<sub>4</sub> (CZTSSSe), and the concentrations of Cu<sub>Zn</sub> accepter defects and 2[Cu<sub>Zn</sub> + Sn<sub>Zn</sub>] defect clusters were effectively inhibited. At the same time, the carrier concentration is increased. The results show that when the Ag doping ratio is 15%, the photovoltaic conversion efficiency (PCE) reaches 8.34%, compared with the single-doped Sb element, the efficiency is increased by 24%. For the first time, this study investigates the collaborative effect of Sb, Ag dual-cation substitution in CZTSSe. The solar cell performance enhancement mechanism offers new potential for the advancement of CZTSSe thin-film solar cell technology in the future.</p>\u0000 </div>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 3","pages":"477-487"},"PeriodicalIF":8.0,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143380212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}