Bidisha Nath, Jeykishan Kumar, Sushant K. Behera, Praveen C. Ramamurthy, Debiprosad Roy Mahapatra, Gopalkrishna Hegde
{"title":"Transformations in Perovskite Photovoltaics: Film Formation, Processing Conditions, and Recovery Outlook","authors":"Bidisha Nath, Jeykishan Kumar, Sushant K. Behera, Praveen C. Ramamurthy, Debiprosad Roy Mahapatra, Gopalkrishna Hegde","doi":"10.1002/pip.3911","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Organometallic halide perovskites have received significant attention due to their promising optoelectronic properties, particularly in photovoltaics. The formation process of perovskite films is crucial in determining their structural and functional characteristics. In this study, the effects of methylamine vapour treatment and vacuum annealing on enhancing the crystallinity, morphology and structural integrity of perovskite films are examined. Methylammonium lead iodide (MAPI)–based perovskite films are investigated, with a focus on their crystallographic structure, vibrational modes and their correlation with device performance. Power conversion efficiencies (PCEs) of 19.5% and 18.6% have been achieved using one-step and two-step processes, respectively. The influence of trap states, film homogeneity and interfacial properties has been analysed through capacitance, photoluminescence and electroluminescence measurements, with recombination behaviour linked to crystallographic properties. These findings provide valuable insights into the role of processing techniques in the rejuvenation of perovskite solar cells. Additionally, they offer guidance for optimising fabrication strategies to improve film quality, device performance, stability and long-term reliability.</p>\n </div>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 6","pages":"689-702"},"PeriodicalIF":8.0000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3911","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Organometallic halide perovskites have received significant attention due to their promising optoelectronic properties, particularly in photovoltaics. The formation process of perovskite films is crucial in determining their structural and functional characteristics. In this study, the effects of methylamine vapour treatment and vacuum annealing on enhancing the crystallinity, morphology and structural integrity of perovskite films are examined. Methylammonium lead iodide (MAPI)–based perovskite films are investigated, with a focus on their crystallographic structure, vibrational modes and their correlation with device performance. Power conversion efficiencies (PCEs) of 19.5% and 18.6% have been achieved using one-step and two-step processes, respectively. The influence of trap states, film homogeneity and interfacial properties has been analysed through capacitance, photoluminescence and electroluminescence measurements, with recombination behaviour linked to crystallographic properties. These findings provide valuable insights into the role of processing techniques in the rejuvenation of perovskite solar cells. Additionally, they offer guidance for optimising fabrication strategies to improve film quality, device performance, stability and long-term reliability.
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.