Surface and Interface Analysis最新文献

筛选
英文 中文
A study on functionalization process of silicon dioxide nanoparticles for hydrophobic coating applications 用于疏水涂层的二氧化硅纳米颗粒功能化工艺研究
IF 1.7 4区 化学
Surface and Interface Analysis Pub Date : 2024-03-10 DOI: 10.1002/sia.7305
Avinash Kumar, Sushant Negi, Simanchal Kar
{"title":"A study on functionalization process of silicon dioxide nanoparticles for hydrophobic coating applications","authors":"Avinash Kumar, Sushant Negi, Simanchal Kar","doi":"10.1002/sia.7305","DOIUrl":"https://doi.org/10.1002/sia.7305","url":null,"abstract":"Functionalized nano-SiO<sub>2</sub> is an inorganic compound that exhibits hydrophobic properties upon the addition of a silane group through a chemical reaction. This property is highly effective in surface modification for various substrates, including glass, metal, and ceramics. These surface modifications find applications in self-cleaning, anti-fogging coatings, and water-repellent materials. In this work, the role of nano-SiO<sub>2</sub> and Hexadecyltrimethoxysilane (HDTMS) functionalized nano-SiO<sub>2</sub> has been synthesized successfully by the sol–gel method for coating applications. The outcomes of water contact angle (WCA), analysis, Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), scanning electron microscope (SEM), and transmission electron microscope (TEM) observations revealed the successful grafting of hydrophobic long-chain alkyl groups from HDTMS onto the surface of SiO<sub>2</sub> nanoparticles. Notably, when the ratio of SiO<sub>2</sub> nanoparticles to HDTMS is 0.25:1, the WCA of the functionalized SiO<sub>2</sub> nanoparticles is enhanced significantly. This value is 5.35 times greater than the initial angle of contact before the modification, leading to the achievement of a super hydrophobic property.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Al2O3 thickness and oxidant precursors on the interface composition and contamination in Al2O3/GaN structures Al2O3 厚度和氧化剂前驱体对 Al2O3/GaN 结构中界面成分和污染的影响
IF 1.7 4区 化学
Surface and Interface Analysis Pub Date : 2024-03-04 DOI: 10.1002/sia.7299
Tarek Spelta, Eugénie Martinez, Marc Veillerot, Pedro Fernandes Paes Pinto Rocha, Laura Vauche, Bassem Salem, Bérangère Hyot
{"title":"Effect of Al2O3 thickness and oxidant precursors on the interface composition and contamination in Al2O3/GaN structures","authors":"Tarek Spelta, Eugénie Martinez, Marc Veillerot, Pedro Fernandes Paes Pinto Rocha, Laura Vauche, Bassem Salem, Bérangère Hyot","doi":"10.1002/sia.7299","DOIUrl":"https://doi.org/10.1002/sia.7299","url":null,"abstract":"In this paper, we investigate the Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>/GaN critical buried interface of the next generation of gallium nitride (GaN)‐based transistors using time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) and hard X‐ray photoelectron spectroscopy (HAXPES). Results highlight that gallium oxidation at this interface is enhanced when increasing the Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> thickness from 3 up to 20 nm. Gallium oxidation is reduced when using both O<jats:sub>3</jats:sub> and H<jats:sub>2</jats:sub>O as oxidant precursors, compared with only H<jats:sub>2</jats:sub>O during the growth of Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>. In addition, the O<jats:sub>3</jats:sub>/H<jats:sub>2</jats:sub>O‐based Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> favors a reduction of contaminants such as hydrogen and carbon but enhances the presence of halides (Cl<jats:sup>−</jats:sup> and F<jats:sup>−</jats:sup>) at this Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>/GaN interface.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140032581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crater radius analysis after dual droplets successive oblique impact on liquid film 双液滴连续斜撞击液膜后的凹坑半径分析
IF 1.7 4区 化学
Surface and Interface Analysis Pub Date : 2024-03-03 DOI: 10.1002/sia.7304
Minle Bao, Denghui Zhao, Luyuan Gong, Yali Guo, Shengqiang Shen
{"title":"Crater radius analysis after dual droplets successive oblique impact on liquid film","authors":"Minle Bao, Denghui Zhao, Luyuan Gong, Yali Guo, Shengqiang Shen","doi":"10.1002/sia.7304","DOIUrl":"https://doi.org/10.1002/sia.7304","url":null,"abstract":"Droplet impact is a common occurrence in nature, agriculture, and industry. The research on the multi‐droplet impact is fundamental to understanding the tangled nature of reality. This paper numerically studies the successive oblique impact of dual droplets on the liquid film by building an effective three‐dimensional model. The leading and trailing droplets are set to pass a certain impact point with the same velocity. The main contribution of this paper is the investigation of the effects of Weber number, liquid film thickness, impact angle, and impact time interval on the interface morphology evolution after the droplet impact. Results show that splash pattern conversion of the primary or secondary crown occurs with the change of these factors. Besides, the variations of the maximum crater radius in upstream, lateral, and downstream directions with time are quantitatively analyzed. The crater radius analysis is carried out from three perspectives, the variation during the single droplet impact, the change during the dual droplets impact, and the comparison between them. It is found that the crater of dual droplets impact exhibits shape distortion in the deformation period and appears a marked dimensional increase in the secondary expansion period.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140025530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis, characterization, and performance evaluation of polyamide‐Ag@SiO2 Raman substrate 聚酰胺-Ag@SiO2 拉曼衬底的合成、表征和性能评估
IF 1.7 4区 化学
Surface and Interface Analysis Pub Date : 2024-03-01 DOI: 10.1002/sia.7303
Shiying Wu, Lan Zhang, Tingting Zhang, Lujie Li, Anqi Li, Lingling Wang, Chang Liu, Weihua Li, Jiansheng Li, Rui Lu
{"title":"Synthesis, characterization, and performance evaluation of polyamide‐Ag@SiO2 Raman substrate","authors":"Shiying Wu, Lan Zhang, Tingting Zhang, Lujie Li, Anqi Li, Lingling Wang, Chang Liu, Weihua Li, Jiansheng Li, Rui Lu","doi":"10.1002/sia.7303","DOIUrl":"https://doi.org/10.1002/sia.7303","url":null,"abstract":"At present, Ag nanoparticles have been widely used as Raman substrates, but their easy oxidation and aggregation have limited practical applications. In order to address the above problems, firstly, tetraethyl orthosilicate as a precursor was applied to synthesis silver coated with silica dioxide nanoparticles (Ag@SiO<jats:sub>2</jats:sub>). As a result, the surface of Ag nanoparticles is uniformly coated with a thin layer of SiO<jats:sub>2</jats:sub> in order to solve the easy oxidation problem without adversely affecting their surface‐enhanced Raman scattering (SERS) performance. Furthermore, Ag@SiO<jats:sub>2</jats:sub> nanoparticles were electrostatically deposited onto polyamide (PA) films to form a two‐dimensional PA‐Ag@SiO<jats:sub>2</jats:sub> film substrate, thus resolving nanoparticle agglomeration issues and further improving the repeatability of the entire system. As can been from the SERS detection results obtained from the probe molecules and pollutants, the Raman signal on the PA‐Ag@SiO<jats:sub>2</jats:sub> thin film substrate has a good degree of sensitivity, stability, and repeatability.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140019244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantification of secondary ion mass spectrometry measurements by using ion‐implanted metallic standards 利用离子注入金属标准品对二次离子质谱测量进行定量
IF 1.7 4区 化学
Surface and Interface Analysis Pub Date : 2024-02-29 DOI: 10.1002/sia.7298
Guiomar Delgado Soria, María González, Miguel Luis Crespillo, Jesús Sánchez Prieto, Gastón García
{"title":"Quantification of secondary ion mass spectrometry measurements by using ion‐implanted metallic standards","authors":"Guiomar Delgado Soria, María González, Miguel Luis Crespillo, Jesús Sánchez Prieto, Gastón García","doi":"10.1002/sia.7298","DOIUrl":"https://doi.org/10.1002/sia.7298","url":null,"abstract":"This research addresses an analytical methodology to quantify elements of interest in fusion‐relevant materials using secondary ion mass spectrometry (SIMS). For this purpose, internal standards have been fabricated by ion implantation to avoid the well‐known matrix effect of this technique. In particular, chromium has been implanted at an energy of 12 MeV using two fluences in high‐purity iron and tungsten matrices together with Si control substrates. The latter were applied to determine the Cr concentration implanted through experimental and semiempirical methods. Specifically, the IBA technique Rutherford backscattering spectrometry (RBS) provided the quantitative results being 3.1 × 10<jats:sup>19</jats:sup> at/cm<jats:sup>3</jats:sup> and 1.6 × 10<jats:sup>19</jats:sup> at/cm<jats:sup>3</jats:sup> for the high and low dose, respectively. The SIMS depth profiles of Cr for the Fe and W matrices established an ion implantation depth close to 2 μm on both substrates in agreement with the calculations previously performed by Stopping and Range of Ions in Matter (SRIM) simulations. Correlation between the integration of SIMS profiles and known concentrations of the implanted ion resulted in the calibration curve for each matrix, obtaining the SIMS quantification approach by means of this relative sensitivity factor (RSF). Additionally, a cross‐check of the method by comparing commercial Fe‐Cr alloys with the Cr‐implanted Fe matrices of the present study pointed out the need to produce standards with higher chromium concentrations.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140002928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tribological properties of Cetyltrimethyl ammonium bromide modified CS as lubrication additive 十六烷基三甲基溴化铵改性 CS 作为润滑添加剂的摩擦学特性
IF 1.7 4区 化学
Surface and Interface Analysis Pub Date : 2024-02-26 DOI: 10.1002/sia.7297
Jing Li, Tianxia Liu, Jinyu Liu
{"title":"Tribological properties of Cetyltrimethyl ammonium bromide modified CS as lubrication additive","authors":"Jing Li, Tianxia Liu, Jinyu Liu","doi":"10.1002/sia.7297","DOIUrl":"https://doi.org/10.1002/sia.7297","url":null,"abstract":"The coal indirect liquefied diesel soot (Coal-to-liquids diesel soot, CS) was collected by a self-made soot trapper. CS was modified with cetyltrimethyl ammonium bromide (CTAB) and named as CS-CTAB. The tribological properties of CS and CS-CTAB in 10<sup>#</sup>white oil(10<sup>#</sup>WO) were tested on a WTM-2E controlled atmosphere miniature friction and wear testing machine. The morphology, composition, and tribological mechanism of CS and modified CS-CTAB were studied by using TEM, XPS, XRD, Raman, and other instruments. The results showed that CS modified by CTAB is wrapped and entangled in long chains. Their main structure components are all amorphous carbon with a small amount of graphite crystallites. The addition of CS-CTAB (0.8 wt%) significantly reduces both AFC and wear rate, with reductions of 32.9% for AFC, and 65.6% for wear rate compared to no additive. The anti-friction and anti-wear effect of CS is greatly improved after being modified by CTAB. Mechanism analysis shows that CS as a lubricant additive, acts as a micro-bearing in the friction process and falls off under the action of shear force to generate an independent graphite sheet, thus forming a graphite protective film on the surface of 304 stainless steel plate. However, CS has the defects of low graphitization degree, large particle size, and easy agglomeration. During friction, uneven adsorption of CS on the surface can worsen wear. However, CTAB modification can improve dispersion stability in 10<sup>#</sup>WO and effectively reduce wear on the friction surface.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139978954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface analysis insight note: Accounting for X-ray beam damage effects in positive electrode-electrolyte interphase investigations 表面分析见解说明:在正电极-电解质相间研究中考虑 X 射线束损伤效应
IF 1.7 4区 化学
Surface and Interface Analysis Pub Date : 2024-02-20 DOI: 10.1002/sia.7294
Roberto Fantin, Ambroise Van Roekeghem, Jean-Pascal Rueff, Anass Benayad
{"title":"Surface analysis insight note: Accounting for X-ray beam damage effects in positive electrode-electrolyte interphase investigations","authors":"Roberto Fantin, Ambroise Van Roekeghem, Jean-Pascal Rueff, Anass Benayad","doi":"10.1002/sia.7294","DOIUrl":"https://doi.org/10.1002/sia.7294","url":null,"abstract":"We investigated the effects of X-ray beam damage during X-ray photoelectron spectroscopy measurement on LiNiO<sub>2</sub> electrodes. The degree of damage induced by lab-based and synchrotron X-ray radiation has been compared between pristine and cycled electrodes, highlighting the role of positive solid electrode–electrolyte interphase to protect the cycled LiNiO<sub>2</sub> surface from beam damage. The possible steps to avoid or at least reduce the beam-induced effects are outlined.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139923928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple graphdiyne-like chains self-assemble into carbon nanotubes 多个类石墨二炔链自组装成碳纳米管
IF 1.7 4区 化学
Surface and Interface Analysis Pub Date : 2024-02-16 DOI: 10.1002/sia.7295
Rui Wang, Houbo Yang, Danhui Zhang, Xuemei Sun, Dengbo Zhang, Jianhui Shi, Ruquan Liang, Anmin Liu
{"title":"Multiple graphdiyne-like chains self-assemble into carbon nanotubes","authors":"Rui Wang, Houbo Yang, Danhui Zhang, Xuemei Sun, Dengbo Zhang, Jianhui Shi, Ruquan Liang, Anmin Liu","doi":"10.1002/sia.7295","DOIUrl":"https://doi.org/10.1002/sia.7295","url":null,"abstract":"The formation process of core–shell structure from multiple graphdiyne-like chains and carbon nanotube is investigated by a molecular dynamics simulation. Multiple graphdiyne-like chains self-curl into helical structures located inside carbon nanotubes. The entire process involves two steps: sliding and twisting. A detailed analysis is conducted on the formation mechanism. Both the van der Waals potential well and the π–π stacking interaction between carbon nanotube and graphdiyne-like chains play a major role in the self-assemble process. Furthermore, the influence factors such as the number of graphdiyne-like chains, the diameter of carbon nanotube, the length of carbon nanotube, the length of graphdiyne-like chains, and the simulation temperature is also investigated. The research results are an important theoretical basis for manufacturing high-quality carbon nanomaterials and other novel nanostructures.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139923821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental determination of reference intensity ratio essential for accurate thickness measurement of HfO2 ultrathin films by XPS 通过 XPS 准确测量 HfO2 超薄薄膜厚度所必需的参考强度比的实验测定
IF 1.7 4区 化学
Surface and Interface Analysis Pub Date : 2024-02-16 DOI: 10.1002/sia.7293
Lulu Zhang, Yasushi Azuma, Akira Kurokawa, Hiroyuki Matsuzaki
{"title":"Experimental determination of reference intensity ratio essential for accurate thickness measurement of HfO2 ultrathin films by XPS","authors":"Lulu Zhang, Yasushi Azuma, Akira Kurokawa, Hiroyuki Matsuzaki","doi":"10.1002/sia.7293","DOIUrl":"https://doi.org/10.1002/sia.7293","url":null,"abstract":"When measuring the thickness of ultrathin overlayer films using X-ray photoelectron spectroscopy (XPS), accurate values of the reference intensity ratio (<i>R</i><sub>0</sub>) and the effective attenuation length (<i>L</i>) are essential. By definition, <i>R</i><sub>0</sub> is the peak intensity ratio for an overlayer and the substrate in “bulk” phases. Two issues need to be addressed in experimental determining <i>R</i><sub>0</sub> for ultrathin films: (i) How might a contamination layer on the sample used for measuring peak intensities impact <i>R</i><sub>0</sub>? And (ii) do differences in the structure or chemistry of an ultrathin film make it inappropriate to determine <i>R</i><sub>0</sub> using bulk forms of the overlayer? In this study, we demonstrate the experimental determination of the <i>R</i><sub>0</sub> for an ultrathin HfO<sub>2</sub> film on a Si(100) substrate with a 2 nm SiO<sub>2</sub> layer. The values of <i>R</i><sub>0</sub> were determined using (i) the bulk materials of the HfO<sub>2</sub> film and substrate and (ii) the ultrathin HfO<sub>2</sub> films after different cleaning treatments. The results show that the <i>R</i><sub>0</sub> determined by the ultrathin films is higher than that determined by the bulk materials. Also, keeping the same level of carbonaceous contamination on the sample surface by cleaning as much as possible is essential for an accurate experimental determination of <i>R</i><sub>0</sub>. In addition, the effective attenuation length was obtained using samples with known thicknesses measured by X-ray reflectometry. The thicknesses and uncertainty budget of the ultrathin HfO<sub>2</sub> films were then evaluated.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139923919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface acoustic wave spectroscopy for non-destructive coating and bulk characterization at temperatures up to 600°C enabled by piezoelectric aluminum nitride coated sensor 利用氮化铝压电涂层传感器,在高达 600°C 的温度条件下利用表面声波光谱进行无损涂层和块体表征
IF 1.7 4区 化学
Surface and Interface Analysis Pub Date : 2024-02-13 DOI: 10.1002/sia.7291
Stefan Makowski, Martin Zawischa, Dieter Schneider, Stephan Barth, Sebastian Schettler, Thanh-Tung Hoang, Hagen Bartzsch, Martina Zimmermann
{"title":"Surface acoustic wave spectroscopy for non-destructive coating and bulk characterization at temperatures up to 600°C enabled by piezoelectric aluminum nitride coated sensor","authors":"Stefan Makowski, Martin Zawischa, Dieter Schneider, Stephan Barth, Sebastian Schettler, Thanh-Tung Hoang, Hagen Bartzsch, Martina Zimmermann","doi":"10.1002/sia.7291","DOIUrl":"https://doi.org/10.1002/sia.7291","url":null,"abstract":"Surface acoustic wave spectroscopy has been established as non-destructive and fast method for characterization of mechanical properties of surfaces and bulk materials in both research and industry. The present work shows that by application of a novel and robust aluminum nitride (AlN) coated piezoelectric contact sensor the advantages of the method can be extended from room temperature to at least 600°C. An overview of sensor concepts and applications of the method is discussed first, followed by theoretical and practical considerations for design and coating of a novel temperature stable contact sensor. After fabrication of such a sensor using magnetron sputtering, it was tested in a modified surface acoustic wave spectroscopy setup with an incorporated heating table concerning signal amplitude and frequency range. The AlN coated sensor was found to perform well up to 600°C, with temperature limited by the specification of the heating table. At room temperature, performance was acceptable when compared with a conventional contact sensor using a PVDF piezoelectric foil. Application of the high temperature capabilities of the setup was demonstrated by measuring temperature stability of hydrogen-free amorphous carbon coatings (a-C and ta-C) depending on their sp<sup>3</sup> carbon ratio. In another example, high precision temperature dependent measurement of Young's modulus for ultrasonic fatigue test specimen was taken, achieving an accuracy better than 1%. Use of the developed sensor opens up new possibilities in material science for in situ study of temperature depending mechanical properties for coatings and surfaces.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139768791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信