{"title":"通过优化氧等离子刻蚀,最大限度地提高同轴电弧等离子沉积法制造的纳米金刚石晶粒的可见拉曼分辨率","authors":"Sreenath Mylo Valappil, Abdelrahman Zkria, Phongsaphak Sittimart, Shinya Ohmagari, Tsuyoshi Yoshitake","doi":"10.1002/sia.7289","DOIUrl":null,"url":null,"abstract":"Among the nondestructive carbon material characterization tools, the prominence of visible Raman spectroscopy has surged remarkably for many years due to its ability to explore a diverse array of carbon bonding configurations. However, to fully unlock the distinctive features concealed within carbon composite materials, additional specimen treatments or precise spectroscope calibrations are necessary. In the same regard, the tiny diamond grain size (5–10 nm) and the pronounced amount of <i>sp</i><sup><i>2</i></sup> carbon in the ultrananocrystalline diamond film represent major challenges in visible light excitation. In this work, we employ calibrated oxygen plasma reactive ion etching conditions to manifest the nanodiamond visible Raman signature from ultrananocrystalline diamond/amorphous carbon composite (UNCD/a-C) films fabricated by coaxial arc plasma deposition. Upon plasma etching, the broad defect band in the visible Raman spectra converged toward the diamond characteristic Raman peak at 1332 cm<sup>−1</sup>. A detailed explanation of band components of the Raman spectra is extracted through peak fitting procedures. The results of Raman spectroscopy are further correlated with the electrical characteristics of the nitrogen-doped UNCD/a-C films due to the optimized oxygen plasma etching processes.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximizing visible Raman resolution of nanodiamond grains fabricated by coaxial arc plasma deposition through oxygen plasma etching optimization\",\"authors\":\"Sreenath Mylo Valappil, Abdelrahman Zkria, Phongsaphak Sittimart, Shinya Ohmagari, Tsuyoshi Yoshitake\",\"doi\":\"10.1002/sia.7289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among the nondestructive carbon material characterization tools, the prominence of visible Raman spectroscopy has surged remarkably for many years due to its ability to explore a diverse array of carbon bonding configurations. However, to fully unlock the distinctive features concealed within carbon composite materials, additional specimen treatments or precise spectroscope calibrations are necessary. In the same regard, the tiny diamond grain size (5–10 nm) and the pronounced amount of <i>sp</i><sup><i>2</i></sup> carbon in the ultrananocrystalline diamond film represent major challenges in visible light excitation. In this work, we employ calibrated oxygen plasma reactive ion etching conditions to manifest the nanodiamond visible Raman signature from ultrananocrystalline diamond/amorphous carbon composite (UNCD/a-C) films fabricated by coaxial arc plasma deposition. Upon plasma etching, the broad defect band in the visible Raman spectra converged toward the diamond characteristic Raman peak at 1332 cm<sup>−1</sup>. A detailed explanation of band components of the Raman spectra is extracted through peak fitting procedures. The results of Raman spectroscopy are further correlated with the electrical characteristics of the nitrogen-doped UNCD/a-C films due to the optimized oxygen plasma etching processes.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/sia.7289\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/sia.7289","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Maximizing visible Raman resolution of nanodiamond grains fabricated by coaxial arc plasma deposition through oxygen plasma etching optimization
Among the nondestructive carbon material characterization tools, the prominence of visible Raman spectroscopy has surged remarkably for many years due to its ability to explore a diverse array of carbon bonding configurations. However, to fully unlock the distinctive features concealed within carbon composite materials, additional specimen treatments or precise spectroscope calibrations are necessary. In the same regard, the tiny diamond grain size (5–10 nm) and the pronounced amount of sp2 carbon in the ultrananocrystalline diamond film represent major challenges in visible light excitation. In this work, we employ calibrated oxygen plasma reactive ion etching conditions to manifest the nanodiamond visible Raman signature from ultrananocrystalline diamond/amorphous carbon composite (UNCD/a-C) films fabricated by coaxial arc plasma deposition. Upon plasma etching, the broad defect band in the visible Raman spectra converged toward the diamond characteristic Raman peak at 1332 cm−1. A detailed explanation of band components of the Raman spectra is extracted through peak fitting procedures. The results of Raman spectroscopy are further correlated with the electrical characteristics of the nitrogen-doped UNCD/a-C films due to the optimized oxygen plasma etching processes.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.