Surface acoustic wave spectroscopy for non-destructive coating and bulk characterization at temperatures up to 600°C enabled by piezoelectric aluminum nitride coated sensor
Stefan Makowski, Martin Zawischa, Dieter Schneider, Stephan Barth, Sebastian Schettler, Thanh-Tung Hoang, Hagen Bartzsch, Martina Zimmermann
{"title":"Surface acoustic wave spectroscopy for non-destructive coating and bulk characterization at temperatures up to 600°C enabled by piezoelectric aluminum nitride coated sensor","authors":"Stefan Makowski, Martin Zawischa, Dieter Schneider, Stephan Barth, Sebastian Schettler, Thanh-Tung Hoang, Hagen Bartzsch, Martina Zimmermann","doi":"10.1002/sia.7291","DOIUrl":null,"url":null,"abstract":"Surface acoustic wave spectroscopy has been established as non-destructive and fast method for characterization of mechanical properties of surfaces and bulk materials in both research and industry. The present work shows that by application of a novel and robust aluminum nitride (AlN) coated piezoelectric contact sensor the advantages of the method can be extended from room temperature to at least 600°C. An overview of sensor concepts and applications of the method is discussed first, followed by theoretical and practical considerations for design and coating of a novel temperature stable contact sensor. After fabrication of such a sensor using magnetron sputtering, it was tested in a modified surface acoustic wave spectroscopy setup with an incorporated heating table concerning signal amplitude and frequency range. The AlN coated sensor was found to perform well up to 600°C, with temperature limited by the specification of the heating table. At room temperature, performance was acceptable when compared with a conventional contact sensor using a PVDF piezoelectric foil. Application of the high temperature capabilities of the setup was demonstrated by measuring temperature stability of hydrogen-free amorphous carbon coatings (a-C and ta-C) depending on their sp<sup>3</sup> carbon ratio. In another example, high precision temperature dependent measurement of Young's modulus for ultrasonic fatigue test specimen was taken, achieving an accuracy better than 1%. Use of the developed sensor opens up new possibilities in material science for in situ study of temperature depending mechanical properties for coatings and surfaces.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/sia.7291","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Surface acoustic wave spectroscopy has been established as non-destructive and fast method for characterization of mechanical properties of surfaces and bulk materials in both research and industry. The present work shows that by application of a novel and robust aluminum nitride (AlN) coated piezoelectric contact sensor the advantages of the method can be extended from room temperature to at least 600°C. An overview of sensor concepts and applications of the method is discussed first, followed by theoretical and practical considerations for design and coating of a novel temperature stable contact sensor. After fabrication of such a sensor using magnetron sputtering, it was tested in a modified surface acoustic wave spectroscopy setup with an incorporated heating table concerning signal amplitude and frequency range. The AlN coated sensor was found to perform well up to 600°C, with temperature limited by the specification of the heating table. At room temperature, performance was acceptable when compared with a conventional contact sensor using a PVDF piezoelectric foil. Application of the high temperature capabilities of the setup was demonstrated by measuring temperature stability of hydrogen-free amorphous carbon coatings (a-C and ta-C) depending on their sp3 carbon ratio. In another example, high precision temperature dependent measurement of Young's modulus for ultrasonic fatigue test specimen was taken, achieving an accuracy better than 1%. Use of the developed sensor opens up new possibilities in material science for in situ study of temperature depending mechanical properties for coatings and surfaces.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.