Smart Materials in Medicine最新文献

筛选
英文 中文
Research hotspots and trends of biodegradable magnesium and its alloys 可生物降解镁及其合金的研究热点和发展趋势
Smart Materials in Medicine Pub Date : 2023-01-01 DOI: 10.1016/j.smaim.2023.01.002
Rui Zan , Sheng Shen , Yuanding Huang , Han Yu , Yaohui Liu , Shi Yang , Bohao Zheng , Zijun Gong , Wenhui Wang , Xiaonong Zhang , Tao Suo , Houbao Liu
{"title":"Research hotspots and trends of biodegradable magnesium and its alloys","authors":"Rui Zan ,&nbsp;Sheng Shen ,&nbsp;Yuanding Huang ,&nbsp;Han Yu ,&nbsp;Yaohui Liu ,&nbsp;Shi Yang ,&nbsp;Bohao Zheng ,&nbsp;Zijun Gong ,&nbsp;Wenhui Wang ,&nbsp;Xiaonong Zhang ,&nbsp;Tao Suo ,&nbsp;Houbao Liu","doi":"10.1016/j.smaim.2023.01.002","DOIUrl":"10.1016/j.smaim.2023.01.002","url":null,"abstract":"<div><p>With the increasing demand for innovative therapies, biodegradable magnesium has attracted more and more attention, which could avoid secondary surgery and reduce complications. Until now, plenty of researchers take part in the research &amp; development of this field, and many articles have been published every year. However, it is a huge challenge to predict research trends and definite topics for researchers, which could result in low research value, wasted resources and even slowed medical device transformation. Usually, reviews summarize a specific topic, such as alloy elements, coating designs, degradable properties, etc. Deriving key indicators from a large amount of data with the help of statistical analysis, make a historical review, current situation analysis, and future prediction more convincing. Herein, it has been conducted a bibliometric study according to 2669 publications collected from the Web of Science (WOS) database from 2005 to 2021. By analyzing some key factors, including annual publications, keywords, country contributions, authors as well as institutions, the evolution of biodegradable magnesium is objectively studied. The research trends of biodegradable magnesium alloys are corrosion resistance, the influence of microstructural control on mechanical behavior and bio-functions of implants in a chronological manner. The co-occurrence mapping of the countries and authors suggests that current in-depth research and development of magnesium is more emphasis on institutional and international cooperation.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"4 ","pages":"Pages 468-479"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44148398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Journey of smart material from composite to shape memory alloy (SMA), characterization and their applications-A review 智能材料从复合材料到形状记忆合金的历程、表征及其应用综述
Smart Materials in Medicine Pub Date : 2023-01-01 DOI: 10.1016/j.smaim.2022.10.002
Uddeshya Shukla , Kamal Garg
{"title":"Journey of smart material from composite to shape memory alloy (SMA), characterization and their applications-A review","authors":"Uddeshya Shukla ,&nbsp;Kamal Garg","doi":"10.1016/j.smaim.2022.10.002","DOIUrl":"10.1016/j.smaim.2022.10.002","url":null,"abstract":"<div><p>This review paper deals with the advancements of composites to shape memory alloys. The journey of smart materials from conventional composites to advance shape memory alloys and their application is described in this literature. Classification of smart materials such as smart composites, shape memory alloys, polymer composite and various other types of materials that are intelligent are explained briefly. Different manufacturing and developing techniques to manufacture smart materials and characterization of conventional composites is compared with advance modern day shape memory alloys. Shape memory effect such as one way and two-way shape memory effect are depicted. However, the most important of all the applications and extensive use of smart materials in health care sector for implants and various other uses with uses in aerospace and automotive industries are reviewed.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"4 ","pages":"Pages 227-242"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46162639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Surface properties and bioactivity of PNIPAM-grafted-chitosan/chondroitin multilayers pnipam接枝壳聚糖/软骨素多层膜的表面性质和生物活性
Smart Materials in Medicine Pub Date : 2023-01-01 DOI: 10.1016/j.smaim.2022.11.008
Yi-Tung Lu , Pei-Tzu Hung , Kui Zeng , Christian Woelk , Bodo Fuhrmann , Kai Zhang , Thomas Groth
{"title":"Surface properties and bioactivity of PNIPAM-grafted-chitosan/chondroitin multilayers","authors":"Yi-Tung Lu ,&nbsp;Pei-Tzu Hung ,&nbsp;Kui Zeng ,&nbsp;Christian Woelk ,&nbsp;Bodo Fuhrmann ,&nbsp;Kai Zhang ,&nbsp;Thomas Groth","doi":"10.1016/j.smaim.2022.11.008","DOIUrl":"https://doi.org/10.1016/j.smaim.2022.11.008","url":null,"abstract":"<div><p>The thermoresponsive poly(<em>N</em>-isopropylacrylamide) (PNIPAM) is widely applied in the biomedical field particularly as thermoresponsive substrate for culture of cells. To be used as a stimuli-responsive coating for cell culture, combining PNIPAM with glycosaminoglycans might be an effective approach to improve its bioactivity. In this study, chitosan is grafted with PNIPAM moieties (PCHI) possessing a cloud point at 31 ​°C and used as a polycation to fabricate thermoresponsive polyelectrolyte multilayers (PEM) with the bioactive polyanion chondroitin sulfate (CS) at pH 4 by layer-by-layer technique. The <em>in-situ</em> investigation by surface plasmon resonance and quartz crystal microbalance with dissipation monitoring confirms that the formation of PEMs with CS can be achieved despite the bulky structure of PCHI at 25 ​°C. The stability of the PEMs is further improved at physiological pH 7.4 by chemical crosslinking using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/<em>N</em>-hydroxysuccinimide. Moreover, these PEMs exhibit de-swelling and swelling ability with different surface wettability in response to temperature, which triggers the adsorption and desorption of adhesive protein vitronectin on the PEMs. At 37 ​°C, the PEMs containing PNIPAM particularly associated with CS terminal layer supports protein adsorption and consequently enhances cell adhesion using multipotent murine stem cells. Overall, due to improved stability, crosslinked PNIPAM-modified biogenic multilayers are cytocompatible and hold great potential as culture substrate for different tissue cells and application in tissue engineering.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"4 ","pages":"Pages 356-367"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49716991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Platinum nanoparticles enhance osteogenic differentiation of human dental follicle stem cells via scavenging ROS 铂纳米颗粒通过清除活性氧促进人牙滤泡干细胞成骨分化
Smart Materials in Medicine Pub Date : 2023-01-01 DOI: 10.1016/j.smaim.2023.06.004
Zheng Wang , Jiaxun Wang , Jiacheng Liu , Yating Zhang , Jingyi Zhang , Ruimeng Yang , Zhaosong Meng , Xiaoqun Gong , Lei Sui
{"title":"Platinum nanoparticles enhance osteogenic differentiation of human dental follicle stem cells via scavenging ROS","authors":"Zheng Wang ,&nbsp;Jiaxun Wang ,&nbsp;Jiacheng Liu ,&nbsp;Yating Zhang ,&nbsp;Jingyi Zhang ,&nbsp;Ruimeng Yang ,&nbsp;Zhaosong Meng ,&nbsp;Xiaoqun Gong ,&nbsp;Lei Sui","doi":"10.1016/j.smaim.2023.06.004","DOIUrl":"https://doi.org/10.1016/j.smaim.2023.06.004","url":null,"abstract":"<div><p>The over-accumulation of ROS during prolonged <em>in vitro</em> expansion could negatively affect the properties of stem cells. This leads to a reduced capacity for self-renewal and a lower potential for multiple differentiation, ultimately hindering their applicability in regenerative medicine. Herein, we fabricated platinum nanoparticles (PtNPs) as a potential biocompatible antioxidant to efficiently eliminate the ROS accumulation in human dental follicle stem cells (hDFSCs) during <em>in vitro</em> expansion, thereby enhancing hDFSCs proliferation and osteogenic differentiation. Transcriptome analysis revealed that PI3K/AKT signaling pathway was activated in PtNPs-treated hDFSCs. Transplantation of PtNPs-treated rDFSCs could facilitate new bone formation compared to transplantation of PBS or un-treated rDFSCs, leading to efficient regeneration of bone tissue in rat mandibular bone defect models. In conclusion, PtNPs offered a novel antioxidative strategy to improve stem cell properties and stem-cells-based alveolar bone regeneration.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"4 ","pages":"Pages 621-638"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49717150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Anti-inflammatory, antibacterial, and antioxidative bioactive glass-based nanofibrous dressing enables scarless wound healing 抗炎,抗菌,抗氧化的生物活性玻璃基纳米纤维敷料使伤口愈合无疤痕
Smart Materials in Medicine Pub Date : 2023-01-01 DOI: 10.1016/j.smaim.2023.01.001
Zhengchao Yuan , Lixiang Zhang , Shichao Jiang , Muhammad Shafiq , Youjun Cai , Yujie Chen , Jiahui Song , Xiao Yu , Hiroyuki Ijima , Yuan Xu , Xiumei Mo
{"title":"Anti-inflammatory, antibacterial, and antioxidative bioactive glass-based nanofibrous dressing enables scarless wound healing","authors":"Zhengchao Yuan ,&nbsp;Lixiang Zhang ,&nbsp;Shichao Jiang ,&nbsp;Muhammad Shafiq ,&nbsp;Youjun Cai ,&nbsp;Yujie Chen ,&nbsp;Jiahui Song ,&nbsp;Xiao Yu ,&nbsp;Hiroyuki Ijima ,&nbsp;Yuan Xu ,&nbsp;Xiumei Mo","doi":"10.1016/j.smaim.2023.01.001","DOIUrl":"https://doi.org/10.1016/j.smaim.2023.01.001","url":null,"abstract":"<div><p>Excessive scar tissue formation along with bacterial infection, hemorrhage, and oxidative wound microenvironment pose adverse physiological and psychological effects on patients, which necessitate the advent of innovative anti-inflammatory, anti-bacterial, and anti-oxidative multifunctional wound dressings. The overarching objective of this study was to exploit bioactive glass (BG) and a natural anti-bacterial component namely “oregano essential oil (OEO)” to impart multifunctionality to poly(L-lactide-co-glycolide)/Gelatin (PLGA/Gel)-based nanofibrous dressings for excisional wound management. We performed a series of structural, morphological, and release studies as well as delineated angiogenic, hemostatic, anti-bacterial, and anti-oxidative properties of these bioactive dressings <em>in vitro</em>, which altogether revealed the beneficial effects of BG and OEO in terms of rapid hemostasis, improved chemotactic response, diminished bacterial colonization, and anti-inflammatory response. Impressively, in multiple injury models, including a rat tail-amputation model, an ear artery injury model, and a liver trauma model in rabbit <em>in vivo</em>, we reported BG-mediated rapid hemostasis. Moreover, dressings containing BG showed improved hemocompatibility and suppressed coagulation as revealed by activated partial thromboplastin assay (APTT) <em>in vitro</em>. In addition, the transplantation of these nanofibrous dressings in a full-thickness excisional wound model in rats showed significant tissue regeneration as evidenced by the more number of blood vessels, glands, and hair follicles, re-epithelialization, diminished inflammatory response, and less fibrotic tissue formation. Taken together our approach of simultaneously harnessing economical BG and OEO to enable multifunctionality to nanofibrous dressings for tissue repair may hold great promise for wound healing as well as other bio-related disciplines.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"4 ","pages":"Pages 407-426"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49734597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
In situ electrospun aloe-nanofiber membrane for chronic wound healing 原位静电纺芦荟纳米纤维膜用于慢性伤口愈合
Smart Materials in Medicine Pub Date : 2023-01-01 DOI: 10.1016/j.smaim.2023.03.003
Chang Liu , Yun Wang , Pei Wang , Yan Gong , Bingcheng Yi , Jing Ruan , Xiansong Wang
{"title":"In situ electrospun aloe-nanofiber membrane for chronic wound healing","authors":"Chang Liu ,&nbsp;Yun Wang ,&nbsp;Pei Wang ,&nbsp;Yan Gong ,&nbsp;Bingcheng Yi ,&nbsp;Jing Ruan ,&nbsp;Xiansong Wang","doi":"10.1016/j.smaim.2023.03.003","DOIUrl":"https://doi.org/10.1016/j.smaim.2023.03.003","url":null,"abstract":"<div><p>Alleviating excessive inflammation while accelerating chronic wound healing to prevent wound infection has remained challenging, especially during the coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 when patients experienced difficulties with receive appropriate healthcare. We addressed this issue by developing handheld electrospun aloe-nanofiber membranes (ANFMs) with convenient, environmentally friendly properties and a therapeutic capacity for wound closure. Our results showed that ANFMs fabricated with high molecular weight polyvinyl alcohol (PVA) to form fibers during electrospinning had uniform fibrous architecture and a porous structure. Given the value of aloe gel in accelerating wound healing, liquid extracts from ANFMs significantly downregulated the expression of the pro-inflammatory genes, <em>interleukin-6</em> (<em>IL-6</em>) and <em>inducible nitric oxide synthase</em> (<em>iNOS</em>), and markedly suppress the generation of reactive oxygen species (ROS) induced by lipopolysaccharide in RAW264.7 macrophages. These results indicated the excellent antioxidant and anti-inflammatory effects of ANFMs. After implantation into a mouse diabetic wound model for 12 days <em>in situ</em>, ANFMs notably expedited chronic wound healing <em>via</em> promoting angiogenesis and enhancing cell viability. Our ANFMs generated by handheld electrospinning <em>in situ</em> healed chronic wounds offer a convenient and promising alternative for patients to heal their own wounds under variable conditions.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"4 ","pages":"Pages 514-521"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49734611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Core-shell nanostructures for improving dental restorative materials: A scoping review of composition, methods, and outcome 改善牙齿修复材料的核壳纳米结构:组成,方法和结果的范围审查
Smart Materials in Medicine Pub Date : 2023-01-01 DOI: 10.1016/j.smaim.2022.08.002
Lamia Sami Mokeem , Isadora Martini Garcia , Yasmin Shahkarami , Lauren Blum , Abdulrahman A. Balhaddad , Fabrício Mezzomo Collares , Mary Ann Williams , Michael D. Weir , Mary Anne S. Melo
{"title":"Core-shell nanostructures for improving dental restorative materials: A scoping review of composition, methods, and outcome","authors":"Lamia Sami Mokeem ,&nbsp;Isadora Martini Garcia ,&nbsp;Yasmin Shahkarami ,&nbsp;Lauren Blum ,&nbsp;Abdulrahman A. Balhaddad ,&nbsp;Fabrício Mezzomo Collares ,&nbsp;Mary Ann Williams ,&nbsp;Michael D. Weir ,&nbsp;Mary Anne S. Melo","doi":"10.1016/j.smaim.2022.08.002","DOIUrl":"10.1016/j.smaim.2022.08.002","url":null,"abstract":"<div><p>Dental resin adhesives and composites are the most prevailing dental restorative materials used to treat cavitated tooth decay. These materials are challenged inside the mouth by bacterial acid attack, lack of bioactivity, and the scarcity of alternatives maintaining the mechanical properties over the lifetime service of these materials. Core-shell nanostructures are composed of various materials surrounded by a protective shell. They are acquiring considerable attention as innovative multipurpose carriers that show great potential in restorative dentistry. Herein, we systematically reviewed the recent studies on core-shell nanostructures incorporated into dental resin-based materials, their intended properties, synthesis methods, and assessment tests employed. This study used scoping review method, following Arksey and O'Malley's five stages framework using PubMed and Scopus (Elsevier) databases. From 149 initially identified manuscripts, 20 studies were eligible for full-text screening, and 15 were included for data extraction. The majority of included studies have used resin composite as parental material. Silica oxide was the most prevailing shell incorporated into dental resins. Almost all core-shell nanostructures were added to improve the material's strength and impart antibacterial properties. Designing strategies and drug release behaviors were discussed. In the end, current challenges and prospects in this promising field were highlighted.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"4 ","pages":"Pages 102-110"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42278386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Promotion of osteoporotic bone healing by a tannic acid modified strontium-doped biomimetic bone lamella with ROS scavenging capacity and pro-osteogenic effect 具有ROS清除能力和促成骨作用的单宁酸修饰的锶掺杂仿生骨片促进骨质疏松性骨愈合
Smart Materials in Medicine Pub Date : 2023-01-01 DOI: 10.1016/j.smaim.2023.05.001
Zhenzhen Wu , Le Fan , Cuiting Chen , Yuanyuan Ma , Xiangnan Wu , Ying Li , Zhichao Hao , Tao Yang
{"title":"Promotion of osteoporotic bone healing by a tannic acid modified strontium-doped biomimetic bone lamella with ROS scavenging capacity and pro-osteogenic effect","authors":"Zhenzhen Wu ,&nbsp;Le Fan ,&nbsp;Cuiting Chen ,&nbsp;Yuanyuan Ma ,&nbsp;Xiangnan Wu ,&nbsp;Ying Li ,&nbsp;Zhichao Hao ,&nbsp;Tao Yang","doi":"10.1016/j.smaim.2023.05.001","DOIUrl":"10.1016/j.smaim.2023.05.001","url":null,"abstract":"<div><p>The impaired osteogenic ability and excessive accumulation of reactive oxygen species (ROS) under osteoporosis severely weaken repair performance of biomimetic bone grafts. Currently, biomimetic bone grafts, capable of highly simulating bone hierarchy, could remarkably promote bone regeneration without systemic disease. Decorating biomimetic bone grafts with bioactivities without compromising hierarchical biomimicry stands as a feasible approach to treat the osteoporotic bone defect. Herein, through mineralizing decellularized collagen lamellae via strontium (Sr)- amorphous calcium phosphate and further modifying with tannic acid (TA), TA modified Sr-doped biomimetic bone lamellae was engineered. The physicochemical properties, ROS scavenging capacity and pro-osteogenic effect on osteoporotic bone marrow mesenchymal stem cells of construct were systemically evaluated. The results showed that TA and Sr can be successfully decorated without impairing the nano- and micro-architecture of biomimetic bone lamellae. The construct not only exhibited a potent and long-standing performance to eliminate ROS, but also effectively fostered the proliferation and osteogenic differentiation of osteoporotic bone marrow mesenchymal stem cells under oxidative stress environment. After implantation in the critical-sized bone defect of osteoporotic rat, it potently facilitated bone regeneration via synergistically activating PI3K/AKT signaling pathway. Hence, this construct is projected to be candidate for further engineering biomimetic bone grafts with more complicated hierarchy for accelerated healing of the osteoporotic bone defect.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"4 ","pages":"Pages 590-602"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42345573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Function and treatment strategies of β-hydroxybutyrate in aging β-羟基丁酸酯在衰老中的作用及治疗策略
Smart Materials in Medicine Pub Date : 2023-01-01 DOI: 10.1016/j.smaim.2022.09.003
Yang Xiang , Qi-Quan Wang , Xin-Qiang Lan , Hui-Jie Zhang , Dai-Xu Wei
{"title":"Function and treatment strategies of β-hydroxybutyrate in aging","authors":"Yang Xiang ,&nbsp;Qi-Quan Wang ,&nbsp;Xin-Qiang Lan ,&nbsp;Hui-Jie Zhang ,&nbsp;Dai-Xu Wei","doi":"10.1016/j.smaim.2022.09.003","DOIUrl":"10.1016/j.smaim.2022.09.003","url":null,"abstract":"<div><p>Metabolic intermediates serve as precursors for bioactive molecule synthesis, the energy source for life activities, and signals for environmental adaptation. Ketone bodies are important metabolic intermediates produced in the liver by the degradation of fatty acids, acting as an alternative energy source for extrahepatic tissues when glucose is short in supply (especially during starvation). β-hydroxybutyric acid, with its conjugate base β-hydroxybutyrate, constitutes approximately 70% of ketone bodies. A growing number of studies have demonstrated the beneficial effects of β-hydroxybutyrate, especially in delaying aging, intervening in aging-related disease, and promoting longevity. This review systematically reviews the role of β-hydroxybutyrate in aging hallmarks, shedding light on the possible molecular mechanism by which β-hydroxybutyrate supports healthy aging. Higher circulating β-hydroxybutyrate can be achieved by lifestyle modification (ketogenic diet or caloric restriction) or exogenous β-hydroxybutyrate (or β-hydroxybutyrate precursors, derivates and agonists) supplementation. We will also discuss the pros and cons of different ways to upregulate β-hydroxybutyrate, emphasizing the promising future clinical use of poly-β-hydroxybutyrate, the polymers of β-hydroxybutyrate, which can be easily produced via a microbial platform and synthetic biology.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"4 ","pages":"Pages 160-172"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44281679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Application of nanomedicine and mesenchymal stem cells in burn injuries for the elderly patients 纳米药物与间充质干细胞在老年烧伤患者中的应用
Smart Materials in Medicine Pub Date : 2023-01-01 DOI: 10.1016/j.smaim.2022.08.001
Wei Xiong , Rui Zhang , Heng Zhou , Ye Liu , Ming Liang , Keshen Li , Xingxiang Duan , David Pengcheng Chen , Yu Luo , Jia Xu , Yilong Ai , Yan He , Qingsong Ye
{"title":"Application of nanomedicine and mesenchymal stem cells in burn injuries for the elderly patients","authors":"Wei Xiong ,&nbsp;Rui Zhang ,&nbsp;Heng Zhou ,&nbsp;Ye Liu ,&nbsp;Ming Liang ,&nbsp;Keshen Li ,&nbsp;Xingxiang Duan ,&nbsp;David Pengcheng Chen ,&nbsp;Yu Luo ,&nbsp;Jia Xu ,&nbsp;Yilong Ai ,&nbsp;Yan He ,&nbsp;Qingsong Ye","doi":"10.1016/j.smaim.2022.08.001","DOIUrl":"10.1016/j.smaim.2022.08.001","url":null,"abstract":"<div><p>Burns not only damage the skin barrier, but also cause a series of inflammatory reactions and oxidative stress states. Among them, elderly patients are prone to suffer severe burns due to degenerative changes of their skin caused by aging factors, such as atrophy and thinning, etc. After burns, the body will continuously release inflammatory factors, resulting in systemic inflammatory response syndrome (SIRS) and oxidative stress, which are related to the poor treatment effect and the poor prognosis of elderly burn patients. It seems to be difficult for conventional treatments to control the disease development of elderly burn patients effectively. Considering the rapidly increasing elderly population, it is priority to understand the pathological process and the mechanisms to formulate more appropriate treatment strategies for elderly burn patients. In recent years, owing to considerable advances in nanotechnology, a variety of nanomaterials have been developed for wound healing and inflammation regulation. Its good biocompatibility, cell proliferation stimulation and antibacterial properties make the clinical treatment strategy more optimized. Concurrently, mesenchymal stem cells (MSCs) have also been used in the burns field and have been proven effective in not only controlling the level of inflammation and regulating the systemic immune balance, but also promoting wound healing and vascularization. Here, this review covers burns classification, the pathological process of elderly burn patients, and the research progress of nanotechnology and MSCs in burns. Eventually, we summarize the advantages and challenges of emerging strategies such as nanotechnology and MSCs in the treatment of elderly burn patients, expecting to promote the clinical transformation.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"4 ","pages":"Pages 78-90"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41765441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信