Maria A. Weber, Hannah Schunker, Laurène Jouve, Emre Işık
{"title":"Understanding Active Region Origins and Emergence on the Sun and Other Cool Stars","authors":"Maria A. Weber, Hannah Schunker, Laurène Jouve, Emre Işık","doi":"10.1007/s11214-023-01006-5","DOIUrl":"https://doi.org/10.1007/s11214-023-01006-5","url":null,"abstract":"Abstract The emergence of active regions on the Sun is an integral feature of the solar dynamo mechanism. However, details about the generation of active-region-scale magnetism and the journey of this magnetic flux from the interior to the photosphere are still in question. Shifting paradigms are now developing for the source depth of the Sun’s large-scale magnetism, the organization of this magnetism into fibril flux tubes, and the role of convection in shaping active-region observables. Here we review the landscape of flux emergence theories and simulations, highlight the role flux emergence plays in the global dynamo process, and make connections between flux emergence on the Sun and other cool stars. As longer-term and higher fidelity observations of both solar active regions and their associated flows are amassed, it is now possible to place new constraints on models of emerging flux. We discuss the outcomes of statistical studies which provide observational evidence that flux emergence may be a more passive process (at least in the upper convection zone); dominated to a greater extent by the influence of convection and to a lesser extent by buoyancy and the Coriolis force acting on rising magnetic flux tubes than previously thought. We also discuss how the relationship between stellar rotation, fractional convection zone depth, and magnetic activity on other stars can help us better understand the flux emergence processes. Looking forward, we identify open questions regarding magnetic flux emergence that we anticipate can be addressed in the next decade with further observations and simulations.","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135943958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. H. Westlake, R. L. McNutt, J. C. Kasper, C. Battista, A. W. Case, C. Cochrane, M. Grey, X. Jia, M. Kivelson, C. Kim, H. Korth, K. K. Khurana, N. Krupp, C. S. Paty, E. Roussos, A. M. Rymer, M. L. Stevens, J. A. Slavin, H. T. Smith, J. Saur, D. Coren
{"title":"The Plasma Instrument for Magnetic Sounding (PIMS) on the Europa Clipper Mission","authors":"J. H. Westlake, R. L. McNutt, J. C. Kasper, C. Battista, A. W. Case, C. Cochrane, M. Grey, X. Jia, M. Kivelson, C. Kim, H. Korth, K. K. Khurana, N. Krupp, C. S. Paty, E. Roussos, A. M. Rymer, M. L. Stevens, J. A. Slavin, H. T. Smith, J. Saur, D. Coren","doi":"10.1007/s11214-023-01002-9","DOIUrl":"https://doi.org/10.1007/s11214-023-01002-9","url":null,"abstract":"Abstract Characterizing Europa’s subsurface ocean is essential for assessing Europa’s habitability. The suite of instruments on the Europa Clipper spacecraft will, among others, magnetically sound Europa’s interior by measuring the ocean’s induced magnetic field. This magnetic field is generated in response to the Jovian time-varying magnetic environment in which Europa is immersed. However, the dynamic magnetized plasma flow of the Jovian magnetosphere creates electrical currents that give rise to magnetic perturbations near Europa. These perturbations complicate the interpretation of the induction signal, and hence the characterization and inferences on potential habitability. Thus, characterization of the ocean by magnetic sounding requires an accurate characterization of the plasma as it flows across Europa. We present the Plasma Instrument for Magnetic Sounding (PIMS), the instrument for the Europa Clipper mission that will measure the plasma contribution to the magnetic field perturbations sensed by the Europa Clipper Magnetometer. PIMS is composed of four Faraday Cup plasma spectrometers that use voltage-biased gridded apertures to dissect the space plasmas that they encounter. The instrument uses sensitive preamplifiers and processing electronics to measure the current that results when charged particles strike the instrument’s metal collector plates, thus enabling a measure of the plasma characteristics near Europa to produce a more accurate magnetic sounding of Europa’s subsurface ocean. PIMS consists of two sensors: one placed near the top of the Europa Clipper spacecraft and one near the bottom. Each sensor contains two Faraday Cups with a 90° full-width field-of-view. The sensors were specifically designed to withstand the Europa environment, measure both ions and electrons, and have two separate voltage ranges intended to analyze the magnetospheric and ionospheric environments, respectively. In this paper, we describe the scientific motivation for this experiment, the design considerations for the PIMS instrument, the details of the ground calibration, and other details pertinent to understanding the scientific data retrieved by PIMS.","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"235 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136077694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Keith S. Noll, Michael E. Brown, Marc W. Buie, William M. Grundy, Harold F. Levison, Simone Marchi, Catherine B. Olkin, S. Alan Stern, Harold A. Weaver
{"title":"Trojan Asteroid Satellites, Rings, and Activity","authors":"Keith S. Noll, Michael E. Brown, Marc W. Buie, William M. Grundy, Harold F. Levison, Simone Marchi, Catherine B. Olkin, S. Alan Stern, Harold A. Weaver","doi":"10.1007/s11214-023-01001-w","DOIUrl":"https://doi.org/10.1007/s11214-023-01001-w","url":null,"abstract":"Abstract The Lucy mission will encounter five Jupiter Trojans during its mission with three of the five already known to be multiple systems. These include a near-equal-mass binary, a small and widely separated satellite, and one intermediate-size satellite system. This chapter reviews the current state of knowledge of Trojan asteroid satellites in the context of similar satellite systems in other small body populations. The prospects for the detection of additional satellites as well as other near-body phenomena are considered. The scientific utility of satellites makes their observation with Lucy an important scientific priority for the mission.","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135706314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas Widemann, Suzanne E. Smrekar, James B. Garvin, Anne Grete Straume-Lindner, Adriana C. Ocampo, Mitchell D. Schulte, Thomas Voirin, Scott Hensley, M. Darby Dyar, Jennifer L. Whitten, Daniel C. Nunes, Stephanie A. Getty, Giada N. Arney, Natasha M. Johnson, Erika Kohler, Tilman Spohn, Joseph G. O’Rourke, Colin F. Wilson, Michael J. Way, Colby Ostberg, Frances Westall, Dennis Höning, Seth Jacobson, Arnaud Salvador, Guillaume Avice, Doris Breuer, Lynn Carter, Martha S. Gilmore, Richard Ghail, Jörn Helbert, Paul Byrne, Alison R. Santos, Robert R. Herrick, Noam Izenberg, Emmanuel Marcq, Tobias Rolf, Matt Weller, Cedric Gillmann, Oleg Korablev, Lev Zelenyi, Ludmila Zasova, Dmitry Gorinov, Gaurav Seth, C. V. Narasimha Rao, Nilesh Desai
{"title":"Venus Evolution Through Time: Key Science Questions, Selected Mission Concepts and Future Investigations","authors":"Thomas Widemann, Suzanne E. Smrekar, James B. Garvin, Anne Grete Straume-Lindner, Adriana C. Ocampo, Mitchell D. Schulte, Thomas Voirin, Scott Hensley, M. Darby Dyar, Jennifer L. Whitten, Daniel C. Nunes, Stephanie A. Getty, Giada N. Arney, Natasha M. Johnson, Erika Kohler, Tilman Spohn, Joseph G. O’Rourke, Colin F. Wilson, Michael J. Way, Colby Ostberg, Frances Westall, Dennis Höning, Seth Jacobson, Arnaud Salvador, Guillaume Avice, Doris Breuer, Lynn Carter, Martha S. Gilmore, Richard Ghail, Jörn Helbert, Paul Byrne, Alison R. Santos, Robert R. Herrick, Noam Izenberg, Emmanuel Marcq, Tobias Rolf, Matt Weller, Cedric Gillmann, Oleg Korablev, Lev Zelenyi, Ludmila Zasova, Dmitry Gorinov, Gaurav Seth, C. V. Narasimha Rao, Nilesh Desai","doi":"10.1007/s11214-023-00992-w","DOIUrl":"https://doi.org/10.1007/s11214-023-00992-w","url":null,"abstract":"Abstract In this work we discuss various selected mission concepts addressing Venus evolution through time. More specifically, we address investigations and payload instrument concepts supporting scientific goals and open questions presented in the companion articles of this volume. Also included are their related investigations (observations & modeling) and discussion of which measurements and future data products are needed to better constrain Venus’ atmosphere, climate, surface, interior and habitability evolution through time. A new fleet of Venus missions has been selected, and new mission concepts will continue to be considered for future selections. Missions under development include radar-equipped ESA-led EnVision M5 orbiter mission (European Space Agency 2021), NASA-JPL’s VERITAS orbiter mission (Smrekar et al. 2022a), NASA-GSFC’s DAVINCI entry probe/flyby mission (Garvin et al. 2022a). The data acquired with the VERITAS, DAVINCI, and EnVision from the end of this decade will fundamentally improve our understanding of the planet’s long term history, current activity and evolutionary path. We further describe future mission concepts and measurements beyond the current framework of selected missions, as well as the synergies between these mission concepts, ground-based and space-based observatories and facilities, laboratory measurements, and future algorithmic or modeling activities that pave the way for the development of a Venus program that extends into the 2040s (Wilson et al. 2022).","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136117795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Richard Meitzler, Insoo Jun, Ryan Blase, Timothy Cassidy, Roger Clark, Corey Cochrane, Sam Fix, Randy Gladstone, John Goldsten, Murthy Gudipati, Kevin Hand, Bryana Henderson, Xianzhe Jia, Joshua Kammer, Peter Kollmann, Alfred McEwen, Heather Meyer, Tom Nordheim, Chris Paranicas, Carol Paty, Kurt Retherford, Elias Roussos, Abigail Rymer, Todd Smith, Joe Westlake, Zach Yokley
{"title":"Investigating Europa’s Radiation Environment with the Europa Clipper Radiation Monitor","authors":"Richard Meitzler, Insoo Jun, Ryan Blase, Timothy Cassidy, Roger Clark, Corey Cochrane, Sam Fix, Randy Gladstone, John Goldsten, Murthy Gudipati, Kevin Hand, Bryana Henderson, Xianzhe Jia, Joshua Kammer, Peter Kollmann, Alfred McEwen, Heather Meyer, Tom Nordheim, Chris Paranicas, Carol Paty, Kurt Retherford, Elias Roussos, Abigail Rymer, Todd Smith, Joe Westlake, Zach Yokley","doi":"10.1007/s11214-023-01003-8","DOIUrl":"https://doi.org/10.1007/s11214-023-01003-8","url":null,"abstract":"Abstract We present an overview of the radiation environment monitoring program planned for the Europa Clipper mission. The harsh radiation environment of Jupiter will be measured by a dedicated Radiation Monitor (RadMon) subsystem, yielding mission accumulative Total Ionizing Dose (TID) and instantaneous electron flux measurements with a 1-Hz cadence. The radiation monitoring subsystem is comprised of a stand alone sensor assembly along with distributed TID assemblies at various locations on the spacecraft. The sensor assembly itself is made of a TID sensor stack using the Metal-Oxide Semiconducting Field-Effect Transistor (MOSFET) and a Charge Rate Monitor (CRM) that uses a stack of bulk charge collection plates. The TID measurements will provide the critical information about the overall radiation levels relevant to the degradation of electronics over time, and the electron flux data can serve as a proxy for the Internal ElectroStatic Discharge (IESD) environment by measuring the >∼1 MeV electron environment. In addition, the radiation monitoring subsystem data will be augmented by serendipitous radiation data from science instruments onboard. This will be enabled by careful modeling and analysis of opportunistic background data from potentially the following instruments: Europa Imaging System (EIS), Europa-Ultraviolet Spectrograph (Europa-UVS), Mapping Imaging Spectrometer for Europa (MISE), MAss Spectrometer for Planetary EXploration (MASPEX), Plasma Instrument for Magnetic Sounding (PIMS), and SUrface Dust Analyzer (SUDA). Based on the current analysis, these instruments will be most sensitive to >1 MeV electrons. As such, the high-energy electron data obtained by the radiation monitoring subsystem will be qualitatively and quantitatively enhanced by the high-energy electron data acquired by the instruments. The holistic radiation monitoring program for the mission will be an extensive collaboration among many teams across the flight and payload systems. Although the radiation monitoring subsystem itself is an engineering resource for the mission, the collective data from the mission can also be used to improve the scientific understanding of the Jovian magnetosphere and the high-energy electron environment near Europa, where the motion of charged particles is perturbed by the local electromagnetic environment. The data could also help in the understanding of the radiation modification of Europa surface compounds, which could subsequently help guide lab experiments to aid in understanding the origin and evolution of surface materials and in constraining the interpretation of observational data. To this end, the radiation monitoring subsystem is a useful resource for helping address the Europa Clipper mission’s primary goal of assessing the habitability of Europa.","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"109 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135761525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Observationally Guided Models for the Solar Dynamo and the Role of the Surface Field","authors":"Robert H. Cameron, Manfred Schüssler","doi":"10.1007/s11214-023-01004-7","DOIUrl":"https://doi.org/10.1007/s11214-023-01004-7","url":null,"abstract":"Abstract Theoretical models for the solar dynamo range from simple low-dimensional “toy models” to complex 3D-MHD simulations. Here we mainly discuss appproaches that are motivated and guided by solar (and stellar) observations. We give a brief overview of the evolution of solar dynamo models since 1950s, focussing upon the development of the Babcock–Leighton approach between its introduction in the 1960s and its revival in the 1990s after being long overshadowed by mean-field turbulent dynamo theory. We summarize observations and simple theoretical deliberations that demonstrate the crucial role of the surface fields in the dynamo process and give quantitative analyses of the generation and loss of toroidal flux in the convection zone as well as of the production of poloidal field resulting from flux emergence at the surface. Furthermore, we discuss possible nonlinearities in the dynamo process suggested by observational results and present models for the long-term variability of solar activity motivated by observations of magnetically active stars and the inherent randomness of the dynamo process.","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135948524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Axel Brandenburg, Detlef Elstner, Youhei Masada, Valery Pipin
{"title":"Turbulent Processes and Mean-Field Dynamo","authors":"Axel Brandenburg, Detlef Elstner, Youhei Masada, Valery Pipin","doi":"10.1007/s11214-023-00999-3","DOIUrl":"https://doi.org/10.1007/s11214-023-00999-3","url":null,"abstract":"Abstract Mean-field dynamo theory has important applications in solar physics and galactic magnetism. We discuss some of the many turbulence effects relevant to the generation of large-scale magnetic fields in the solar convection zone. The mean-field description is then used to illustrate the physics of the $alpha $ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> </mml:math> effect, turbulent pumping, turbulent magnetic diffusivity, and other effects on a modern solar dynamo model. We also discuss how turbulence transport coefficients are derived from local simulations of convection and then used in mean-field models.","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135342980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sandra V. Jeffers, René Kiefer, Travis S. Metcalfe
{"title":"Stellar Activity Cycles","authors":"Sandra V. Jeffers, René Kiefer, Travis S. Metcalfe","doi":"10.1007/s11214-023-01000-x","DOIUrl":"https://doi.org/10.1007/s11214-023-01000-x","url":null,"abstract":"Abstract The magnetic field of the Sun is generated by internal dynamo process with a cyclic period of 11 years or a 22 year magnetic cycle. The signatures of the Sun’s magnetic cycle are observed in the different layers of its atmosphere and in its internal layers. In this review, we use the same diagnostics to understand the magnetic cycles of other stars with the same internal structure as the Sun. We review what is currently known about mapping the surface magnetic fields, chromospheric and coronal indicators, cycles in photometry and asteroseismology. We conclude our review with an outlook for the future.","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135342981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arnaud Salvador, Guillaume Avice, Doris Breuer, Cédric Gillmann, Helmut Lammer, Emmanuel Marcq, Sean N. Raymond, Haruka Sakuraba, Manuel Scherf, M. J. Way
{"title":"Magma Ocean, Water, and the Early Atmosphere of Venus","authors":"Arnaud Salvador, Guillaume Avice, Doris Breuer, Cédric Gillmann, Helmut Lammer, Emmanuel Marcq, Sean N. Raymond, Haruka Sakuraba, Manuel Scherf, M. J. Way","doi":"10.1007/s11214-023-00995-7","DOIUrl":"https://doi.org/10.1007/s11214-023-00995-7","url":null,"abstract":"Abstract The current state and surface conditions of the Earth and its twin planet Venus are drastically different. Whether these differences are directly inherited from the earliest stages of planetary evolution, when the interior was molten, or arose later during the long-term evolution is still unclear. Yet, it is clear that water, its abundance, state, and distribution between the different planetary reservoirs, which are intimately related to the solidification and outgassing of the early magma ocean, are key components regarding past and present-day habitability, planetary evolution, and the different pathways leading to various surface conditions. In this chapter we start by reviewing the outcomes of the accretion sequence, with particular emphasis on the sources and timing of water delivery in light of available constraints, and the initial thermal state of Venus at the end of the main accretion. Then, we detail the processes at play during the early thermo-chemical evolution of molten terrestrial planets, and how they can affect the abundance and distribution of water within the different planetary reservoirs. Namely, we focus on the magma ocean cooling, solidification, and concurrent formation of the outgassed atmosphere. Accounting for the possible range of parameters for early Venus and based on the mechanisms and feedbacks described, we provide an overview of the likely evolutionary pathways leading to diverse surface conditions, from a temperate to a hellish early Venus. The implications of the resulting surface conditions and habitability are discussed in the context of the subsequent long-term interior and atmospheric evolution. Future research directions and observations are proposed to constrain the different scenarios in order to reconcile Venus’ early evolution with its current state, while deciphering which path it followed.","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136263168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Martha S. Gilmore, M. Darby Dyar, Nils Mueller, Jérémy Brossier, Alison R. Santos, Mikhail Ivanov, Richard Ghail, Justin Filiberto, Jörn Helbert
{"title":"Mineralogy of the Venus Surface","authors":"Martha S. Gilmore, M. Darby Dyar, Nils Mueller, Jérémy Brossier, Alison R. Santos, Mikhail Ivanov, Richard Ghail, Justin Filiberto, Jörn Helbert","doi":"10.1007/s11214-023-00988-6","DOIUrl":"https://doi.org/10.1007/s11214-023-00988-6","url":null,"abstract":"Abstract Surface mineralogy records the primary composition, climate history and the geochemical cycling between the surface and atmosphere. We have not yet directly measured mineralogy on the Venus surface in situ, but a variety of independent investigations yield a basic understanding of surface composition and weathering reactions in the present era where rocks react under a supercritical atmosphere dominated by CO 2 , N 2 and SO 2 at ∼460 °C and 92 bars. The primary composition of the volcanic plains that cover ∼80% of the surface is inferred to be basaltic, as measured by the 7 Venera and Vega landers and consistent with morphology. These landers also recorded elevated SO 3 values, low rock densities and spectral signatures of hematite consistent with chemical weathering under an oxidizing environment. Thermodynamic modeling and laboratory experiments under present day atmospheric conditions predict and demonstrate reactions where Fe, Ca, Na in rocks react primarily with S species to form sulfates, sulfides and oxides. Variations in surface emissivity at ∼1 μm detected by the VIRTIS instrument on the Venus Express orbiter are spatially correlated to geologic terrains. Laboratory measurements of the near-infrared (NIR) emissivity of geologic materials at Venus surface temperatures confirms theoretical predictions that 1 μm emissivity is directly related to Fe 2+ content in minerals. These data reveal regions of high emissivity that may indicate unweathered and recently erupted basalts and low emissivity associated with tessera terrain that may indicate felsic materials formed during a more clement era. Magellan radar emissivity also constrain mineralogy as this parameter is inversely related to the type and volume of high dielectric minerals, likely to have formed due to surface/atmosphere reactions. The observation of both viscous and low viscosity volcanic flows in Magellan images may also be related to composition. The global NIR emissivity and high-resolution radar and topography collected by the VERITAS, EnVision and DAVINCI missions will provide a revolutionary advancement of these methods and our understanding of Venus mineralogy. Critically, these datasets must be supported with both laboratory experiments to constrain the style and rate weathering reactions and laboratory measurements of their NIR emissivity and radar characteristics at Venus conditions.","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136263355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}