Space Science ReviewsPub Date : 2025-01-01Epub Date: 2025-02-12DOI: 10.1007/s11214-025-01145-x
J L Burch, Rumi Nakamura
{"title":"Magnetic Reconnection in Space: An Introduction.","authors":"J L Burch, Rumi Nakamura","doi":"10.1007/s11214-025-01145-x","DOIUrl":"10.1007/s11214-025-01145-x","url":null,"abstract":"<p><p>An International Space Science Institute (ISSI) workshop was convened to assess recent rapid advances in studies of magnetic reconnection made possible by the NASA Magnetospheric Multiscale (MMS) mission and to place them in context with concurrent advances in solar physics by the Parker Solar Probe, astrophysics, planetary science and laboratory plasma physics. The review papers resulting from this study focus primarily on results obtained by MMS, and these papers are complemented by reports of advances in magnetic reconnection physics in these other plasma environments. This paper introduces the topical collection \"Magnetic Reconnection: Explosive Energy Conversion in Space Plasmas\", in particular introducing the new capabilities of the MMS mission used in majority of the articles in the collection and briefly summarizing the advances obtained from MMS.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"221 1","pages":"19"},"PeriodicalIF":9.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821752/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143433831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Space Science ReviewsPub Date : 2025-01-01Epub Date: 2025-01-29DOI: 10.1007/s11214-025-01134-0
Sascha Kempf, Scott Tucker, Nicolas Altobelli, Christelle Briois, Morgan L Cable, Eberhard Grün, Murthy S Gudipati, Bryana L Henderson, Hsian-Wen Hsu, Kevin Hand, Mihaly Horanyi, Frank Postberg, Jürgen Schmidt, Ralf Srama, Zoltan Sternovsky, Gabriel Tobie, Mikhail Y Zolotov, Chris Belting, Susan Bortfeldt, Jordy Bouwman, Nat Brennan, Karen Bryant, Timothy Cassidy, David Crotser, Alexandra Curtin, Elz DeVito, Donrich Ebuen, Nat Faber, Melanie Fisher, John Fontanese, Maxwell Fowle, Wendy Frank, Scott Gurst, Sally Haselschwardt, Vaughn Hoxie, Karl Hubbell, David James, Mark Kien, Scott Knappmiller, Rick Kohnert, Alexander Lampe, Mark Lankton, Sean Lev-Tov, Crystal McGinn, Marc Miller, Gregory Newcomb, Samuel Oberg, Leela O'Brien, Kathrine Pilewskie, Shawn Polson, Victoria Scarffe-Barrett, David Summers, Stacy Wade, Alexandria Ware, Alan Yehle, Corinne Wuerthner, Adrian Garcia Arteaga, Bogdan Oaida, Chad Eberl, Polly Fitton, William Goode, Zuni Levin, Gwyneth Lowry, Jared Stanley, Anthony Tracy, Zach Ulibarri, Ethan Williams, Camille Yoke, Ben S Southworth, Jonathan K Hillier, Nozair Khawaja, Fabian Klenner, Maryse Napoleoni, Jonas Simolka, Jason Sioeng
{"title":"SUDA: A SUrface Dust Analyser for Compositional Mapping of the Galilean Moon Europa.","authors":"Sascha Kempf, Scott Tucker, Nicolas Altobelli, Christelle Briois, Morgan L Cable, Eberhard Grün, Murthy S Gudipati, Bryana L Henderson, Hsian-Wen Hsu, Kevin Hand, Mihaly Horanyi, Frank Postberg, Jürgen Schmidt, Ralf Srama, Zoltan Sternovsky, Gabriel Tobie, Mikhail Y Zolotov, Chris Belting, Susan Bortfeldt, Jordy Bouwman, Nat Brennan, Karen Bryant, Timothy Cassidy, David Crotser, Alexandra Curtin, Elz DeVito, Donrich Ebuen, Nat Faber, Melanie Fisher, John Fontanese, Maxwell Fowle, Wendy Frank, Scott Gurst, Sally Haselschwardt, Vaughn Hoxie, Karl Hubbell, David James, Mark Kien, Scott Knappmiller, Rick Kohnert, Alexander Lampe, Mark Lankton, Sean Lev-Tov, Crystal McGinn, Marc Miller, Gregory Newcomb, Samuel Oberg, Leela O'Brien, Kathrine Pilewskie, Shawn Polson, Victoria Scarffe-Barrett, David Summers, Stacy Wade, Alexandria Ware, Alan Yehle, Corinne Wuerthner, Adrian Garcia Arteaga, Bogdan Oaida, Chad Eberl, Polly Fitton, William Goode, Zuni Levin, Gwyneth Lowry, Jared Stanley, Anthony Tracy, Zach Ulibarri, Ethan Williams, Camille Yoke, Ben S Southworth, Jonathan K Hillier, Nozair Khawaja, Fabian Klenner, Maryse Napoleoni, Jonas Simolka, Jason Sioeng","doi":"10.1007/s11214-025-01134-0","DOIUrl":"10.1007/s11214-025-01134-0","url":null,"abstract":"<p><p>The Surface Dust Analyser (SUDA) is a mass spectrometer onboard the Europa Clipper mission for investigating the surface composition of the Galilean moon Europa. Atmosphereless planetary moons such as the Galilean satellites are wrapped into a ballistic dust exosphere populated by tiny samples from the moon's surface produced by impacts of fast micrometeoroids. SUDA will measure the composition of such surface ejecta during close flybys of Europa to obtain key chemical signatures for revealing the satellite's composition such as organic molecules and salts, history, and geological evolution. Because of their ballistic orbits, detected ejecta can be traced back to the surface with a spatial resolution roughly equal to the instantaneous altitude of the spacecraft. SUDA is a Time-Of-Flight (TOF), reflectron-type impact mass spectrometer, optimized for a high mass resolution which only weakly depends on the impact location. The instrument will measure the mass, speed, charge, elemental, molecular, and isotopic composition of impacting grains. The instrument's small size of <math><mn>268</mn> <mspace></mspace> <mi>mm</mi> <mo>×</mo> <mn>250</mn> <mspace></mspace> <mi>mm</mi> <mo>×</mo> <mn>171</mn></math> <math><mspace></mspace> <mi>mm</mi></math> , radiation-hard design, and rather large sensitive area of 220 cm<sup>2</sup> matches well the challenging demands of the Clipper mission.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"221 1","pages":"10"},"PeriodicalIF":9.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11836169/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143469311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Space Science ReviewsPub Date : 2025-01-01Epub Date: 2025-02-14DOI: 10.1007/s11214-025-01147-9
Jasper S Halekas, Christian Hansen, Suranga Ruhunusiri, David Sheets, Antonio Washington, Richard M Beals, Scott R Bounds, Andrew Carton, Ivar W Christopher, Danielle Crawford, Katherine Deasy, Jeffrey S Dolan, Richard Dvorsky, Connor Feltman, Garret Hinson, Samuel Hisel, Amanda Lasko, Aidan Moore, Katherine Morris, Chris W Piker, Kevin Steele, Darrelle Wilkinson, Craig A Kletzing, David M Miles
{"title":"The TRACERS Analyzer for Cusp Electrons.","authors":"Jasper S Halekas, Christian Hansen, Suranga Ruhunusiri, David Sheets, Antonio Washington, Richard M Beals, Scott R Bounds, Andrew Carton, Ivar W Christopher, Danielle Crawford, Katherine Deasy, Jeffrey S Dolan, Richard Dvorsky, Connor Feltman, Garret Hinson, Samuel Hisel, Amanda Lasko, Aidan Moore, Katherine Morris, Chris W Piker, Kevin Steele, Darrelle Wilkinson, Craig A Kletzing, David M Miles","doi":"10.1007/s11214-025-01147-9","DOIUrl":"10.1007/s11214-025-01147-9","url":null,"abstract":"<p><p>The Analyzer for Cusp Electrons (ACE) instruments on the Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites (TRACERS) mission provide measurements of electron velocity distribution functions from two closely spaced spacecraft in a low Earth orbit that passes through the magnetospheric cusp. The precipitating and upward-going electrons provide a sensitive probe of the magnetic field line topology and electrostatic potential structure, as well as revealing dynamic processes. ACE measurements contribute to the top-level TRACERS goals of characterizing the spatial and temporal variation of magnetic reconnection at the terrestrial magnetopause and its relationship to dynamic structures in the cusp. ACE utilizes a classic hemispheric electrostatic analyzer on a spinning platform to provide full angular coverage with 10 degree by 7 degree resolution. ACE can measure electrons over an energy range of 20-13,500 electron volts, with fractional energy resolution of 19%. ACE provides 50 ms cadence measurements of the electron velocity distribution, enabling sub-kilometer spatial resolution of cusp boundaries and other structures.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"221 1","pages":"21"},"PeriodicalIF":9.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11828801/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143433835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Space Science ReviewsPub Date : 2025-01-01Epub Date: 2025-01-16DOI: 10.1007/s11214-025-01136-y
G Tobie, P Auclair-Desrotour, M Běhounková, M Kervazo, O Souček, K Kalousová
{"title":"Tidal Deformation and Dissipation Processes in Icy Worlds.","authors":"G Tobie, P Auclair-Desrotour, M Běhounková, M Kervazo, O Souček, K Kalousová","doi":"10.1007/s11214-025-01136-y","DOIUrl":"10.1007/s11214-025-01136-y","url":null,"abstract":"<p><p>Tidal interactions play a key role in the dynamics and evolution of icy worlds. The intense tectonic activity of Europa and the eruption activity on Enceladus are clear examples of the manifestation of tidal deformation and associated dissipation. While tidal heating has long been recognized as a major driver in the activity of these icy worlds, the mechanism controlling how tidal forces deform the different internal layers and produce heat by tidal friction still remains poorly constrained. As tidal forcing varies with orbital characteristics (distance to the central planet, eccentricity, obliquity), the contribution of tidal heating to the internal heat budget can strongly change over geological timescales. In some circumstances, the tidally-produced heat can result in internal melting and surface activity taking various forms. Even in the absence of significant heat production, tidal deformation can be used to probe the interior structure, the tidal response of icy moons being strongly sensitive to their hydrosphere structure. In the present paper, we review the methods to compute tidal deformation and dissipation in the different layers composing icy worlds. After summarizing the main principle of tidal deformation and the different rheological models used to model visco-elastic tidal response, we describe the dissipation processes expected in rock-dominated cores, subsurface oceans and icy shells and highlight the potential effects of tidal heating in terms of thermal evolution and activity. We finally anticipate how data collected by future missions to Jupiter's and Saturn's moons could be used to constrain their tidal response and the consequences for past and present activities.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"221 1","pages":"6"},"PeriodicalIF":9.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11739232/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143011925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Space Science ReviewsPub Date : 2025-01-01Epub Date: 2025-02-11DOI: 10.1007/s11214-025-01143-z
R Nakamura, J L Burch, J Birn, L-J Chen, D B Graham, F Guo, K-J Hwang, H Ji, Y V Khotyaintsev, Y-H Liu, M Oka, D Payne, M I Sitnov, M Swisdak, S Zenitani, J F Drake, S A Fuselier, K J Genestreti, D J Gershman, H Hasegawa, M Hoshino, C Norgren, M A Shay, J R Shuster, J E Stawarz
{"title":"Outstanding Questions and Future Research on Magnetic Reconnection.","authors":"R Nakamura, J L Burch, J Birn, L-J Chen, D B Graham, F Guo, K-J Hwang, H Ji, Y V Khotyaintsev, Y-H Liu, M Oka, D Payne, M I Sitnov, M Swisdak, S Zenitani, J F Drake, S A Fuselier, K J Genestreti, D J Gershman, H Hasegawa, M Hoshino, C Norgren, M A Shay, J R Shuster, J E Stawarz","doi":"10.1007/s11214-025-01143-z","DOIUrl":"10.1007/s11214-025-01143-z","url":null,"abstract":"<p><p>This short article highlights unsolved problems of magnetic reconnection in collisionless plasma. Advanced in-situ plasma measurements and simulations have enabled scientists to gain a novel understanding of magnetic reconnection. Nevertheless, outstanding questions remain concerning the complex dynamics and structures in the diffusion region, cross-scale and regional couplings, the onset of magnetic reconnection, and the details of particle energization. We discuss future directions for magnetic reconnection research, including new observations, new simulations, and interdisciplinary approaches.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"221 1","pages":"17"},"PeriodicalIF":9.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11814039/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143415323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Space Science ReviewsPub Date : 2025-01-01Epub Date: 2025-01-27DOI: 10.1007/s11214-024-01126-6
Chi Wang, Graziella Branduardi-Raymont, C Philippe Escoubet, Colin Forsyth
{"title":"Solar Wind Magnetosphere Ionosphere Link Explorer (SMILE): Science and Mission Overview.","authors":"Chi Wang, Graziella Branduardi-Raymont, C Philippe Escoubet, Colin Forsyth","doi":"10.1007/s11214-024-01126-6","DOIUrl":"10.1007/s11214-024-01126-6","url":null,"abstract":"<p><p>The Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) was proposed to the Chinese Academy of Science (CAS) and the European Space Agency (ESA) following a joint call for science missions issued in January 2015. SMILE was proposed by a team of European and Chinese scientists, led by two mission Co-PIs, one from China and one from Europe. SMILE was selected in June 2015, and its budget adopted by the Chinese Academy of Sciences in November 2016 and the ESA Science Programme Committee in March 2019, respectively. SMILE will investigate the connection between the Sun and the Earth using a new technique that will image the magnetopause and polar cusps: the key regions where the solar wind impinges on Earth's magnetic field. Simultaneously, SMILE will image the auroras borealis in an ultraviolet waveband, providing long-duration continuous observations of the northern polar regions. In addition, the ion and magnetic field characteristics of the magnetospheric lobes, magnetosheath and solar wind will be measured by the in-situ instrument package. Here, we present the science goals, instruments and planned orbit. In addition the Working Groups that are supporting the preparation of the mission and the coordination with other magnetospheric missions are described.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"221 1","pages":"9"},"PeriodicalIF":9.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772532/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143068031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Space Science ReviewsPub Date : 2025-01-01Epub Date: 2025-02-05DOI: 10.1007/s11214-025-01137-x
Lorenz Roth, Aljona Blöcker, Katherine de Kleer, David Goldstein, Emmanuel Lellouch, Joachim Saur, Carl Schmidt, Darrell F Strobel, Chihiro Tao, Fuminori Tsuchiya, Vincent Dols, Hans Huybrighs, Alessandro Mura, Jamey R Szalay, Sarah V Badman, Imke de Pater, Anne-Cathrine Dott, Masato Kagitani, Lea Klaiber, Ryoichi Koga, Alfred S McEwen, Zachariah Milby, Kurt D Retherford, Stephan Schlegel, Nicolas Thomas, Wei-Ling Tseng, Audrey Vorburger
{"title":"Mass Supply from Io to Jupiter's Magnetosphere.","authors":"Lorenz Roth, Aljona Blöcker, Katherine de Kleer, David Goldstein, Emmanuel Lellouch, Joachim Saur, Carl Schmidt, Darrell F Strobel, Chihiro Tao, Fuminori Tsuchiya, Vincent Dols, Hans Huybrighs, Alessandro Mura, Jamey R Szalay, Sarah V Badman, Imke de Pater, Anne-Cathrine Dott, Masato Kagitani, Lea Klaiber, Ryoichi Koga, Alfred S McEwen, Zachariah Milby, Kurt D Retherford, Stephan Schlegel, Nicolas Thomas, Wei-Ling Tseng, Audrey Vorburger","doi":"10.1007/s11214-025-01137-x","DOIUrl":"10.1007/s11214-025-01137-x","url":null,"abstract":"<p><p>Since the Voyager mission flybys in 1979, we have known the moon Io to be both volcanically active and the main source of plasma in the vast magnetosphere of Jupiter. Material lost from Io forms neutral clouds, the Io plasma torus and ultimately the extended plasma sheet. This material is supplied from Io's upper atmosphere and atmospheric loss is likely driven by plasma-interaction effects with possible contributions from thermal escape and photochemistry-driven escape. Direct volcanic escape is negligible. The supply of material to maintain the plasma torus has been estimated from various methods at roughly one ton per second. Most of the time the magnetospheric plasma environment of Io is stable on timescales from days to months. Similarly, Io's atmosphere was found to have a stable average density on the dayside, although it exhibits lateral (longitudinal and latitudinal) and temporal (both diurnal and seasonal) variations. There is a potential positive feedback in the Io torus supply: collisions of torus plasma with atmospheric neutrals are probably a significant loss process, which increases with torus density. The stability of the torus environment may be maintained by limiting mechanisms of either torus supply from Io or the loss from the torus by centrifugal interchange in the middle magnetosphere. Various observations suggest that occasionally (roughly 1 to 2 detections per decade) the plasma torus undergoes major transient changes over a period of several weeks, apparently overcoming possible stabilizing mechanisms. Such events (as well as more frequent minor changes) are commonly explained by some kind of change in volcanic activity that triggers a chain of reactions which modify the plasma torus state via a net change in supply of new mass. However, it remains unknown what kind of volcanic event (if any) can trigger events in torus and magnetosphere, whether Io's atmosphere undergoes a general change before or during such events, and what processes could enable such a change in the otherwise stable torus. Alternative explanations, which are not invoking volcanic activity, have not been put forward. We review the current knowledge on Io's volcanic activity, atmosphere, and the magnetospheric neutral and plasma environment and their roles in mass transfer from Io to the plasma torus and magnetosphere. We provide an overview of the recorded events of transient changes in the torus, address several contradictions and inconsistencies, and point out gaps in our current understanding. Lastly, we provide a list of relevant terms and their definitions.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"221 1","pages":"13"},"PeriodicalIF":9.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799133/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143383263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Space Science ReviewsPub Date : 2025-01-01Epub Date: 2025-02-04DOI: 10.1007/s11214-024-01132-8
Martin R Lee, Conel M O'D Alexander, Addi Bischoff, Adrian J Brearley, Elena Dobrică, Wataru Fujiya, Corentin Le Guillou, Ashley J King, Elishevah van Kooten, Alexander N Krot, Jan Leitner, Yves Marrocchi, Markus Patzek, Michail I Petaev, Laurette Piani, Olga Pravdivtseva, Laurent Remusat, Myriam Telus, Akira Tsuchiyama, Lionel G Vacher
{"title":"Low-Temperature Aqueous Alteration of Chondrites.","authors":"Martin R Lee, Conel M O'D Alexander, Addi Bischoff, Adrian J Brearley, Elena Dobrică, Wataru Fujiya, Corentin Le Guillou, Ashley J King, Elishevah van Kooten, Alexander N Krot, Jan Leitner, Yves Marrocchi, Markus Patzek, Michail I Petaev, Laurette Piani, Olga Pravdivtseva, Laurent Remusat, Myriam Telus, Akira Tsuchiyama, Lionel G Vacher","doi":"10.1007/s11214-024-01132-8","DOIUrl":"10.1007/s11214-024-01132-8","url":null,"abstract":"<p><p>Chondritic meteorites (chondrites) contain evidence for the interaction of liquid water with the interiors of small bodies early in Solar System history. Here we review the processes, products and timings of the low-temperature aqueous alteration reactions in CR, CM, CI and ungrouped carbonaceous chondrites, the asteroids Ryugu and Bennu, and hydrated dark clasts in different types of meteorites. We first consider the nature of chondritic lithologies and the insights that they provide into alteration conditions, subdivided by the mineralogy and petrology of hydrated chondrites, the mineralogy of hydrated dark clasts, the effects of alteration on presolar grains, and the evolution of organic matter. We then describe the properties of the aqueous fluids and how they reacted with accreted material as revealed by physicochemical modelling and hydrothermal experiments, the analysis of fluid inclusions in aqueously formed minerals, and isotope tracers. Lastly, we outline the chronology of aqueous alteration reactions as determined using the <sup>53</sup>Mn-<sup>53</sup>Cr and <sup>129</sup>I-<sup>129</sup>Xe systems.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11214-024-01132-8.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"221 1","pages":"11"},"PeriodicalIF":9.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794400/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143365947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Space Science ReviewsPub Date : 2025-01-01Epub Date: 2025-02-10DOI: 10.1007/s11214-025-01142-0
Yi-Hsin Liu, Michael Hesse, Kevin Genestreti, Rumi Nakamura, James L Burch, Paul A Cassak, Naoki Bessho, Jonathan P Eastwood, Tai Phan, Marc Swisdak, Sergio Toledo-Redondo, Masahiro Hoshino, Cecilia Norgren, Hantao Ji, Takuma K M Nakamura
{"title":"Ohm's Law, the Reconnection Rate, and Energy Conversion in Collisionless Magnetic Reconnection.","authors":"Yi-Hsin Liu, Michael Hesse, Kevin Genestreti, Rumi Nakamura, James L Burch, Paul A Cassak, Naoki Bessho, Jonathan P Eastwood, Tai Phan, Marc Swisdak, Sergio Toledo-Redondo, Masahiro Hoshino, Cecilia Norgren, Hantao Ji, Takuma K M Nakamura","doi":"10.1007/s11214-025-01142-0","DOIUrl":"10.1007/s11214-025-01142-0","url":null,"abstract":"<p><p>Magnetic reconnection is a ubiquitous plasma process that transforms magnetic energy into particle energy during eruptive events throughout the universe. Reconnection not only converts energy during solar flares and geomagnetic substorms that drive space weather near Earth, but it may also play critical roles in the high energy emissions from the magnetospheres of neutron stars and black holes. In this review article, we focus on collisionless plasmas that are most relevant to reconnection in many space and astrophysical plasmas. Guided by first-principles kinetic simulations and spaceborne in-situ observations, we highlight the most recent progress in understanding this fundamental plasma process. We start by discussing the non-ideal electric field in the generalized Ohm's law that breaks the frozen-in flux condition in ideal magnetohydrodynamics and allows magnetic reconnection to occur. We point out that this same reconnection electric field also plays an important role in sustaining the current and pressure in the current sheet and then discuss the determination of its magnitude (i.e., the reconnection rate), based on force balance and energy conservation. This approach to determining the reconnection rate is applied to kinetic current sheets with a wide variety of magnetic geometries, parameters, and background conditions. We also briefly review the key diagnostics and modeling of energy conversion around the reconnection diffusion region, seeking insights from recently developed theories. Finally, future prospects and open questions are discussed.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"221 1","pages":"16"},"PeriodicalIF":9.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811489/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143411103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Space Science ReviewsPub Date : 2025-01-01Epub Date: 2024-12-27DOI: 10.1007/s11214-024-01129-3
Eva Krämer, Florian Koller, Jonas Suni, Adrian T LaMoury, Adrian Pöppelwerth, Georg Glebe, Tara Mohammed-Amin, Savvas Raptis, Laura Vuorinen, Stefan Weiss, Niki Xirogiannopoulou, Martin Archer, Xóchitl Blanco-Cano, Herbert Gunell, Heli Hietala, Tomas Karlsson, Ferdinand Plaschke, Luis Preisser, Owen Roberts, Cyril Simon Wedlund, Manuela Temmer, Zoltán Vörös
{"title":"Jets Downstream of Collisionless Shocks: Recent Discoveries and Challenges.","authors":"Eva Krämer, Florian Koller, Jonas Suni, Adrian T LaMoury, Adrian Pöppelwerth, Georg Glebe, Tara Mohammed-Amin, Savvas Raptis, Laura Vuorinen, Stefan Weiss, Niki Xirogiannopoulou, Martin Archer, Xóchitl Blanco-Cano, Herbert Gunell, Heli Hietala, Tomas Karlsson, Ferdinand Plaschke, Luis Preisser, Owen Roberts, Cyril Simon Wedlund, Manuela Temmer, Zoltán Vörös","doi":"10.1007/s11214-024-01129-3","DOIUrl":"10.1007/s11214-024-01129-3","url":null,"abstract":"<p><p>Plasma flows with enhanced dynamic pressure, known as magnetosheath jets, are often found downstream of collisionless shocks. As they propagate through the magnetosheath, they interact with the surrounding plasma, shaping its properties, and potentially becoming geoeffective upon reaching the magnetopause. In recent years (since 2016), new research has produced vital results that have significantly enhanced our understanding on many aspects of jets. In this review, we summarise and discuss these findings. Spacecraft and ground-based observations, as well as global and local simulations, have contributed greatly to our understanding of the causes and effects of magnetosheath jets. First, we discuss recent findings on jet occurrence and formation, including in other planetary environments. New insights into jet properties and evolution are then examined using observations and simulations. Finally, we review the impact of jets upon interaction with the magnetopause and subsequent consequences for the magnetosphere-ionosphere system. We conclude with an outlook and assessment on future challenges. This includes an overview on future space missions that may prove crucial in tackling the outstanding open questions on jets in the terrestrial magnetosheath as well as other planetary and shock environments.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"221 1","pages":"4"},"PeriodicalIF":9.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680644/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142903543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}