J. Henneke, D. Klevang, Y. Liu, J. Jørgensen, T. Denver, M. Rice, S. VanBommel, C. Toldbo, J. Hurowitz, M. Tice, N. Tosca, J. Johnson, A. Winhold, A. Allwood, J. Bell
{"title":"A Radiometric Correction Method and Performance Characteristics for PIXL’s Multispectral Analysis Using LEDs","authors":"J. Henneke, D. Klevang, Y. Liu, J. Jørgensen, T. Denver, M. Rice, S. VanBommel, C. Toldbo, J. Hurowitz, M. Tice, N. Tosca, J. Johnson, A. Winhold, A. Allwood, J. Bell","doi":"10.1007/s11214-023-01014-5","DOIUrl":null,"url":null,"abstract":"Abstract The Planetary Instrument for X-ray Lithochemistry (PIXL) onboard the Perseverance rover, part of NASA’s Mars 2020 mission, has the first camera system that utilizes active light sources to generate multispectral data directly on a planetary surface. PIXL collects the multispectral data using three different components in the Optical Fiducial System (OFS): Micro Context Camera (MCC), Floodlight Illuminator (FLI), and Structure light illuminator (SLI). MCC captures images illuminated at different wavelengths by FLI while topography information is obtained by synchronously operating the MCC and SLI. A radiometric calibration for such a system has not been attempted before. Here we present a novel radiometric correction process and verify the output to a mean error of 0.4% by comparing it to calibrated spectral data from the Three Axis N-sample Automated Goniometer for Evaluation Reflectance (TANAGER). We demonstrate that the radiometrically corrected data can clearly discern different features in natural rock and mineral samples. We also conclude that the same radiometric correction process can be used on Mars as the optical system is designed to autonomously compensates for the effects of the Martian environment on the instrument. Having multispectral capabilities has proven to be very valuable for extrapolating the detailed mineral and crystallographic information produced by X-ray spectroscopy from the X-ray system of PIXL.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11214-023-01014-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The Planetary Instrument for X-ray Lithochemistry (PIXL) onboard the Perseverance rover, part of NASA’s Mars 2020 mission, has the first camera system that utilizes active light sources to generate multispectral data directly on a planetary surface. PIXL collects the multispectral data using three different components in the Optical Fiducial System (OFS): Micro Context Camera (MCC), Floodlight Illuminator (FLI), and Structure light illuminator (SLI). MCC captures images illuminated at different wavelengths by FLI while topography information is obtained by synchronously operating the MCC and SLI. A radiometric calibration for such a system has not been attempted before. Here we present a novel radiometric correction process and verify the output to a mean error of 0.4% by comparing it to calibrated spectral data from the Three Axis N-sample Automated Goniometer for Evaluation Reflectance (TANAGER). We demonstrate that the radiometrically corrected data can clearly discern different features in natural rock and mineral samples. We also conclude that the same radiometric correction process can be used on Mars as the optical system is designed to autonomously compensates for the effects of the Martian environment on the instrument. Having multispectral capabilities has proven to be very valuable for extrapolating the detailed mineral and crystallographic information produced by X-ray spectroscopy from the X-ray system of PIXL.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.