J. H. Westlake, R. L. McNutt, J. C. Kasper, C. Battista, A. W. Case, C. Cochrane, M. Grey, X. Jia, M. Kivelson, C. Kim, H. Korth, K. K. Khurana, N. Krupp, C. S. Paty, E. Roussos, A. M. Rymer, M. L. Stevens, J. A. Slavin, H. T. Smith, J. Saur, D. Coren
{"title":"The Plasma Instrument for Magnetic Sounding (PIMS) on the Europa Clipper Mission","authors":"J. H. Westlake, R. L. McNutt, J. C. Kasper, C. Battista, A. W. Case, C. Cochrane, M. Grey, X. Jia, M. Kivelson, C. Kim, H. Korth, K. K. Khurana, N. Krupp, C. S. Paty, E. Roussos, A. M. Rymer, M. L. Stevens, J. A. Slavin, H. T. Smith, J. Saur, D. Coren","doi":"10.1007/s11214-023-01002-9","DOIUrl":null,"url":null,"abstract":"Abstract Characterizing Europa’s subsurface ocean is essential for assessing Europa’s habitability. The suite of instruments on the Europa Clipper spacecraft will, among others, magnetically sound Europa’s interior by measuring the ocean’s induced magnetic field. This magnetic field is generated in response to the Jovian time-varying magnetic environment in which Europa is immersed. However, the dynamic magnetized plasma flow of the Jovian magnetosphere creates electrical currents that give rise to magnetic perturbations near Europa. These perturbations complicate the interpretation of the induction signal, and hence the characterization and inferences on potential habitability. Thus, characterization of the ocean by magnetic sounding requires an accurate characterization of the plasma as it flows across Europa. We present the Plasma Instrument for Magnetic Sounding (PIMS), the instrument for the Europa Clipper mission that will measure the plasma contribution to the magnetic field perturbations sensed by the Europa Clipper Magnetometer. PIMS is composed of four Faraday Cup plasma spectrometers that use voltage-biased gridded apertures to dissect the space plasmas that they encounter. The instrument uses sensitive preamplifiers and processing electronics to measure the current that results when charged particles strike the instrument’s metal collector plates, thus enabling a measure of the plasma characteristics near Europa to produce a more accurate magnetic sounding of Europa’s subsurface ocean. PIMS consists of two sensors: one placed near the top of the Europa Clipper spacecraft and one near the bottom. Each sensor contains two Faraday Cups with a 90° full-width field-of-view. The sensors were specifically designed to withstand the Europa environment, measure both ions and electrons, and have two separate voltage ranges intended to analyze the magnetospheric and ionospheric environments, respectively. In this paper, we describe the scientific motivation for this experiment, the design considerations for the PIMS instrument, the details of the ground calibration, and other details pertinent to understanding the scientific data retrieved by PIMS.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11214-023-01002-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Characterizing Europa’s subsurface ocean is essential for assessing Europa’s habitability. The suite of instruments on the Europa Clipper spacecraft will, among others, magnetically sound Europa’s interior by measuring the ocean’s induced magnetic field. This magnetic field is generated in response to the Jovian time-varying magnetic environment in which Europa is immersed. However, the dynamic magnetized plasma flow of the Jovian magnetosphere creates electrical currents that give rise to magnetic perturbations near Europa. These perturbations complicate the interpretation of the induction signal, and hence the characterization and inferences on potential habitability. Thus, characterization of the ocean by magnetic sounding requires an accurate characterization of the plasma as it flows across Europa. We present the Plasma Instrument for Magnetic Sounding (PIMS), the instrument for the Europa Clipper mission that will measure the plasma contribution to the magnetic field perturbations sensed by the Europa Clipper Magnetometer. PIMS is composed of four Faraday Cup plasma spectrometers that use voltage-biased gridded apertures to dissect the space plasmas that they encounter. The instrument uses sensitive preamplifiers and processing electronics to measure the current that results when charged particles strike the instrument’s metal collector plates, thus enabling a measure of the plasma characteristics near Europa to produce a more accurate magnetic sounding of Europa’s subsurface ocean. PIMS consists of two sensors: one placed near the top of the Europa Clipper spacecraft and one near the bottom. Each sensor contains two Faraday Cups with a 90° full-width field-of-view. The sensors were specifically designed to withstand the Europa environment, measure both ions and electrons, and have two separate voltage ranges intended to analyze the magnetospheric and ionospheric environments, respectively. In this paper, we describe the scientific motivation for this experiment, the design considerations for the PIMS instrument, the details of the ground calibration, and other details pertinent to understanding the scientific data retrieved by PIMS.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.