Small Structures最新文献

筛选
英文 中文
Intercalation-Conversion Hybrid Cathode Enabled by MXene-Driven TiO2/TiS2 Heterostructure for High-Energy-Density Li–S Battery 利用 MXene 驱动的 TiO2/TiS2 异质结构实现互钙-转换混合负极,用于高能量密度锂离子电池
Small Structures Pub Date : 2024-08-08 DOI: 10.1002/sstr.202470039
Viet Phuong Nguyen, Yusra Qureshi, Hyung Cheoul Shim, Jong Min Yuk, Jae-Hyun Kim, Seung-Mo Lee
{"title":"Intercalation-Conversion Hybrid Cathode Enabled by MXene-Driven TiO2/TiS2 Heterostructure for High-Energy-Density Li–S Battery","authors":"Viet Phuong Nguyen, Yusra Qureshi, Hyung Cheoul Shim, Jong Min Yuk, Jae-Hyun Kim, Seung-Mo Lee","doi":"10.1002/sstr.202470039","DOIUrl":"https://doi.org/10.1002/sstr.202470039","url":null,"abstract":"<b>Lithium–Sulfur Batteries</b>","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"118 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141936040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of Cuprous Organic Frameworks with Adjustable Pores as Membrane Materials for C3H6/C3H8 Separation 合成具有可调孔隙的铜有机框架作为分离 C3H6/C3H8 的膜材料
Small Structures Pub Date : 2024-08-08 DOI: 10.1002/sstr.202400295
Zeliang Cheng, Hui Wu, Hao Zhang, Ziyang Wang, Lina Wang, Xiaoqin Zou, Guangshan Zhu
{"title":"Synthesis of Cuprous Organic Frameworks with Adjustable Pores as Membrane Materials for C3H6/C3H8 Separation","authors":"Zeliang Cheng, Hui Wu, Hao Zhang, Ziyang Wang, Lina Wang, Xiaoqin Zou, Guangshan Zhu","doi":"10.1002/sstr.202400295","DOIUrl":"https://doi.org/10.1002/sstr.202400295","url":null,"abstract":"Metal–covalent organic frameworks (MCOFs) combining the advantages of open metal sites of metal–organic frameworks and covalent connections of COFs are potential platform for gas separation. Herein, three 2D cuprous-based MCOFs (Cu-COFs, named Cu-TABA, Cu-TFBA, and Cu-TP) are designed and synthesized through Schiff base condensation using two trinuclear cuprous complexes and three organic building blocks with different sizes. These Cu-COFs possess high crystallinity, good stability, and microporous structure with gradually decreasing pore size. The 1D columnar channels facilitate the rapid transport of gas molecules along the layer-by-layer stacking direction. The open cuprous ions serve as adsorption sites and interact strongly with propylene (C<sub>3</sub>H<sub>6</sub>) through <i>π</i>-complexation. The mixed matrix membranes (MMMs) fabricated by Cu-COFs and polymer (6FDA-DAM) exhibit superior propylene/propane (C<sub>3</sub>H<sub>6</sub>/C<sub>3</sub>H<sub>8</sub>) separation performance; shown by C<sub>3</sub>H<sub>6</sub> permeability as high as 85.5 Barrer and C<sub>3</sub>H<sub>6</sub>/C<sub>3</sub>H<sub>8</sub> selectivity reaching 36.6, much higher than those of pure 6FDA-DAM membrane. The performance beyond most reported MMMs demonstrates that Cu-COFs are candidate membrane materials for C<sub>3</sub>H<sub>6</sub>/C<sub>3</sub>H<sub>8</sub> separation.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"33 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetically Guided Theranostics: Novel Nanotubular Magnetic Resonance Imaging Contrast System Using Halloysite Nanotubes Embedded with Iron–Platinum Nanoparticles for Hepatocellular Carcinoma Treatment 磁导治疗学:利用嵌入铁-铂纳米粒子的海泡石纳米管治疗肝细胞癌的新型纳米管磁共振成像对比系统
Small Structures Pub Date : 2024-08-08 DOI: 10.1002/sstr.202470038
Ming-Hsien Chan, Chi-Yu Lee, Chien-Hsiu Li, Yu-Chan Chang, Da-Hua Wei, Michael Hsiao
{"title":"Magnetically Guided Theranostics: Novel Nanotubular Magnetic Resonance Imaging Contrast System Using Halloysite Nanotubes Embedded with Iron–Platinum Nanoparticles for Hepatocellular Carcinoma Treatment","authors":"Ming-Hsien Chan, Chi-Yu Lee, Chien-Hsiu Li, Yu-Chan Chang, Da-Hua Wei, Michael Hsiao","doi":"10.1002/sstr.202470038","DOIUrl":"https://doi.org/10.1002/sstr.202470038","url":null,"abstract":"<b>Magnetically Guided Theranostics</b>","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141936039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Organic–Inorganic Superlattice with Nanocrystal-Amorphous Composite Nanolayers for Ultrahigh Thermoelectric Performance 具有纳米晶-非晶复合纳米层的有机-无机超晶格实现超高热电性能
Small Structures Pub Date : 2024-08-06 DOI: 10.1002/sstr.202400201
Indirajith Palani, Duyen Thi Nguyen, Jongchan Kim, Quang Khanh Nguyen, Long Van Nguyen, Da Som Song, Jong Sun Lim, Chang Gyon Kim, Kyeongjae Cho, Myung Mo Sung
{"title":"An Organic–Inorganic Superlattice with Nanocrystal-Amorphous Composite Nanolayers for Ultrahigh Thermoelectric Performance","authors":"Indirajith Palani, Duyen Thi Nguyen, Jongchan Kim, Quang Khanh Nguyen, Long Van Nguyen, Da Som Song, Jong Sun Lim, Chang Gyon Kim, Kyeongjae Cho, Myung Mo Sung","doi":"10.1002/sstr.202400201","DOIUrl":"https://doi.org/10.1002/sstr.202400201","url":null,"abstract":"Thermoelectric materials play a crucial role in converting heat into electricity, offering significant potential for applications in waste heat recovery and cooling. Herein, an innovative approach that combines an organic–inorganic hybrid superlattice structure with nanocrystal-amorphous composite nanolayers is introduced. The nanocrystal-amorphous composite enhances the Seebeck coefficient resulting in a notable twofold improvement in the power factor. The superlattice, alternating self-assembled organic monolayers and inorganic nanolayers, effectively reduces lattice thermal conductivity by creating multiple interfaces that scatter phonons effectively. The integration of the nanocrystal-amorphous composite nanolayers into the superlattice provides a dual advantage, simultaneously boosting the power factor and suppressing thermal conductivity. This synergistic effect leads to exceptional thermoelectric performance in the 4-mercaptophenol/Sb<sub>2</sub>Te<sub>3</sub> superlattice, with achieved figure of merit (ZT) values of 3.48 at 300 K and reaching a peak ZT value exceeding 4.0 at 400 K while surpassing 2.5 over the temperature range from 300 to 500 K. These results suggest that this innovative approach paves the way for the development of highly efficient thermoelectric materials, propelling efforts toward more energy-efficient and environmentally friendly solutions.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"195 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Performance Cooperative DNA Nanodevice Enables Sensitive Circular RNA Imaging and Precise Tumor Growth Suppression 高性能合作 DNA 纳米器件实现灵敏的环状 RNA 成像和精确的肿瘤生长抑制
Small Structures Pub Date : 2024-08-06 DOI: 10.1002/sstr.202400255
Ye Zhang, Siting Chen, Shihua Luo, Wenbin Li, Lifeng Zhang, Fei Lan, Yitong Zhu, Huijun Du, Ke Li, Chunchen Liu, Bo Situ, Bo Li, Xiaohui Yan
{"title":"High-Performance Cooperative DNA Nanodevice Enables Sensitive Circular RNA Imaging and Precise Tumor Growth Suppression","authors":"Ye Zhang, Siting Chen, Shihua Luo, Wenbin Li, Lifeng Zhang, Fei Lan, Yitong Zhu, Huijun Du, Ke Li, Chunchen Liu, Bo Situ, Bo Li, Xiaohui Yan","doi":"10.1002/sstr.202400255","DOIUrl":"https://doi.org/10.1002/sstr.202400255","url":null,"abstract":"The utility of circular RNAs (circRNAs) as emerging biomarkers and regulatory factors in medical diagnostics and therapeutics is hampered by the challenges associated with their sensitive detection and precise modulation. Herein, a high-performance cooperative DNA nanodevice (HCDN) based on DNA tetrahedron-confined catalytic DNA assembly reaction (DT-CDA) that enables both imaging and regulation of circRNAs is developed. Activation of the DT-CDA is contingent upon the presence of the target circRNA, which, together with a replicative fuel probe, catalyzes the sequential opening of additional DT-CDAs. This cooperative exponential signal amplification with negligible background interference allows HCDN to effectively detect minute quantities of circRNAs. Employing circSATB2 as a model, the HCDN demonstrates substantial downregulation of Cyclin D1 (CCND1) mRNA and protein levels in cellular and in vivo models, thereby inhibiting tumor growth. The innovative design of HCDN sets the stage for a powerful methodology conducive to enhanced clinical diagnostics and biomolecule manipulation, thereby advancing the capabilities and applications of DNA nanotechnology.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"59 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Systematic “Apple-to-Apple” Comparison of Single-Crystal and Polycrystalline Ni-Rich Cathode Active Materials: From Comparable Synthesis to Comparable Electrochemical Conditions 单晶和多晶富镍阴极活性材料的系统性 "苹果对苹果 "比较:从可比合成到可比电化学条件
Small Structures Pub Date : 2024-08-06 DOI: 10.1002/sstr.202400119
Marco Joes Lüther, Shi-Kai Jiang, Martin Alexander Lange, Julius Buchmann, Aurora Gómez Martín, Richard Schmuch, Tobias Placke, Bing Joe Hwang, Martin Winter, Johannes Kasnatscheew
{"title":"Systematic “Apple-to-Apple” Comparison of Single-Crystal and Polycrystalline Ni-Rich Cathode Active Materials: From Comparable Synthesis to Comparable Electrochemical Conditions","authors":"Marco Joes Lüther, Shi-Kai Jiang, Martin Alexander Lange, Julius Buchmann, Aurora Gómez Martín, Richard Schmuch, Tobias Placke, Bing Joe Hwang, Martin Winter, Johannes Kasnatscheew","doi":"10.1002/sstr.202400119","DOIUrl":"https://doi.org/10.1002/sstr.202400119","url":null,"abstract":"State-of-the-art ternary layered oxide cathode active materials in Li-ion batteries (LIBs) consist of polycrystalline (PC), i.e., micron-sized secondary particles, which in turn consist of numerous nanosized primary particles. Recent approaches to develop single crystals (SCs), i.e., single and separated micron-sized primary particles, appear promising in terms of cycle life given their mechanical stability. However, a direct and systematic (“fair”) comparison of SC with PC in LIB cell application remains a challenge due to both differences on material level and state-of-charge (SoC), as SCs typically have slightly lower delithiation capacities/Li<sup>+</sup> extraction ratios. In this work, PC and SC Li[Ni<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>]O<sub>2</sub> (NMC811) are synthesized with comparable bulk and surface characteristics from identical self-synthesized precursors. Indeed, the cycle life of SCs is not only superior, when conventionally charged to equal upper cutoff voltage (UCV), as shown in NMC||Li and NMC||graphite cells, but also after adjusting UCVs to similar SoCs, where bigger SCs counterintuitively have even a better rate performance and cycle life.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statistical Survey of Chemical and Geometric Patterns on Protein Surfaces as a Blueprint for Protein-Mimicking Nanoparticles 蛋白质表面化学和几何图案的统计调查是蛋白质仿真纳米粒子的蓝图
Small Structures Pub Date : 2024-08-06 DOI: 10.1002/sstr.202400086
John M. McBride, Aleksei Koshevarnikov, Marta Siek, Bartosz A. Grzybowski, Tsvi Tlusty
{"title":"Statistical Survey of Chemical and Geometric Patterns on Protein Surfaces as a Blueprint for Protein-Mimicking Nanoparticles","authors":"John M. McBride, Aleksei Koshevarnikov, Marta Siek, Bartosz A. Grzybowski, Tsvi Tlusty","doi":"10.1002/sstr.202400086","DOIUrl":"https://doi.org/10.1002/sstr.202400086","url":null,"abstract":"Despite recent breakthroughs in understanding how protein sequence relates to structure and function, considerably less attention has been paid to the general features of protein surfaces beyond those regions involved in binding and catalysis. This article provides a systematic survey of the universe of protein surfaces and quantifies the sizes, shapes, and curvatures of the positively/negatively charged and hydrophobic/hydrophilic surface patches as well as correlations between such patches. It then compares these statistics with the metrics characterizing nanoparticles functionalized with ligands terminated with positively and negatively charged ligands. These particles are of particular interest because they are also surface patchy and have been shown to exhibit both antibiotic and anticancer activities—via selective interactions against various cellular structures—prompting loose analogies to proteins. The analyses support such analogies in several respects (e.g., patterns of charged protrusions and hydrophobic niches similar to those observed in proteins), although there are also significant differences. Looking forward, this work provides a blueprint for the rational design of synthetic nano-objects with further enhanced mimicry of proteins’ surface properties.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"43 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery of Molecular Intermediates and Nonclassical Nanoparticle Formation Mechanisms by Liquid Phase Electron Microscopy and Reaction Throughput Analysis 通过液相电子显微镜和反应通量分析发现分子中间体和非典型纳米粒子形成机制
Small Structures Pub Date : 2024-08-04 DOI: 10.1002/sstr.202400146
Jiayue Sun, Birk Fritsch, Andreas Körner, Mehran Taherkhani, Chiwoo Park, Mei Wang, Andreas Hutzler, Taylor J. Woehl
{"title":"Discovery of Molecular Intermediates and Nonclassical Nanoparticle Formation Mechanisms by Liquid Phase Electron Microscopy and Reaction Throughput Analysis","authors":"Jiayue Sun, Birk Fritsch, Andreas Körner, Mehran Taherkhani, Chiwoo Park, Mei Wang, Andreas Hutzler, Taylor J. Woehl","doi":"10.1002/sstr.202400146","DOIUrl":"https://doi.org/10.1002/sstr.202400146","url":null,"abstract":"Formation kinetics of metal nanoparticles are generally described <i>via</i> mass transport and thermodynamics-based models, such as diffusion-limited growth and classical nucleation theory (CNT). However, metal monomers are commonly assumed as precursors, leaving the identity of molecular intermediates and their contribution to nanoparticle formation unclear. Herein, liquid phase transmission electron microscopy (LPTEM) and reaction kinetic modeling are utilized to establish the nucleation and growth mechanisms and discover molecular intermediates during silver nanoparticle formation. Quantitative LPTEM measurements show that their nucleation rate decreases while growth rate is nearly invariant with electron dose rate. Reaction kinetic simulations show that Ag<sub>4</sub> and Ag<sup>−</sup> follow a statistically similar dose rate dependence as the experimentally determined growth rate. We show that experimental growth rates are consistent with diffusion-limited growth <i>via</i> the attachment of these species to nanoparticles. The dose rate dependence of nucleation rate is inconsistent with CNT. A reaction-limited nucleation mechanism is proposed and it is demonstrated that experimental nucleation kinetics are consistent with Ag<sub>4</sub><sup>2+</sup> aggregation rates at millisecond time scales. Reaction throughput analysis of the kinetic simulations uncovered formation and decay pathways mediating intermediate concentrations. We demonstrate the power of quantitative LPTEM combined with kinetic modeling for establishing nanoparticle formation mechanisms and principal intermediates.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interfacial Synthesis of Two-Dimensional Porphyrin Polymer Films with Large Optical Nonlinearity 具有大光学非线性的二维卟啉聚合物薄膜的界面合成
Small Structures Pub Date : 2024-07-28 DOI: 10.1002/sstr.202400152
Fengxiang Zhao, Geping Zhang, Wei Xie, Xin Kong, Xiaomeng Duan, Yubin Fu, Jichao Zhang, Guoquan Gao, Tong Zhu, Jingcheng Hao, Hongguang Li, Renhao Dong
{"title":"Interfacial Synthesis of Two-Dimensional Porphyrin Polymer Films with Large Optical Nonlinearity","authors":"Fengxiang Zhao, Geping Zhang, Wei Xie, Xin Kong, Xiaomeng Duan, Yubin Fu, Jichao Zhang, Guoquan Gao, Tong Zhu, Jingcheng Hao, Hongguang Li, Renhao Dong","doi":"10.1002/sstr.202400152","DOIUrl":"https://doi.org/10.1002/sstr.202400152","url":null,"abstract":"Two-dimensional polymers (2DPs) and their layer-stacked 2D covalent organic frameworks have recently emerged as nonlinear optical (NLO) materials for potential applications in optics. However, the chemistry for designing third-order NLO 2DP films with large nonlinear absorption coefficient (<i>β</i>) has remained a mystery. Herein, three highly crystalline porphyrin-integrated 2D polyimines (named as 2DPI-Zn-Azo, 2DPI-2H-Azo, and 2DPI-Zn), which are homogeneous films showing large lateral areas over cm<sup>2</sup>, uniform transparency, and thickness of tens of nanometers are reported. Particularly, the 2DPI-Zn-Azo film comprising zinc porphyrin and –NN– displays a large saturable absorption under 532 nm and the highest <i>β</i> (−1.88 × 10<sup>5</sup> cm GW<sup>−1</sup>) among the three 2D polyimines, that is also 2–5 orders of magnitude higher than the state-of-art performance of photoactive small molecules, porphyrin-integrated 2DPs, and inorganic 2D materials. Control experiments in combination with theoretical calculation discover that the embedding of metal centers and –NN– results in highly delocalized <i>π</i>-electrons and narrow bandgap in 2DPI-Zn-Azo, which enables fast transfer of the photogenerated electrons after the light-excited charge separation, thus boosting the NLO performance. This work opens up a new path for the construction of highly efficient third-order NLO film materials, and pushes the development of 2DPs for optics and optoelectronics.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"683 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141873396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the Reactivity and the Li-Ion Exchange at the PEO-Li6PS5Cl Interphase: Insights from Solid-State NMR 揭示 PEO-Li6PS5Cl 相间的反应性和锂离子交换:固态核磁共振的启示
Small Structures Pub Date : 2024-07-28 DOI: 10.1002/sstr.202400139
Pedram Ghorbanzade, Arianna Pesce, Michel Armand, Kerman Gómez, Shanmukaraj Devaraj, Pedro López-Aranguren, Juan Miguel López del Amo
{"title":"Unveiling the Reactivity and the Li-Ion Exchange at the PEO-Li6PS5Cl Interphase: Insights from Solid-State NMR","authors":"Pedram Ghorbanzade, Arianna Pesce, Michel Armand, Kerman Gómez, Shanmukaraj Devaraj, Pedro López-Aranguren, Juan Miguel López del Amo","doi":"10.1002/sstr.202400139","DOIUrl":"https://doi.org/10.1002/sstr.202400139","url":null,"abstract":"Li<sub>6</sub>PS<sub>5</sub>Cl (LPSCl) argyrodites offer high room temperature ionic conductivity (&gt;1 mS cm<sup>−1</sup>) and are among the most promising solid electrolytes. However, their chemical instability against Li metal compromises the long-term cyclability. Using PEO-LiTFSI as an interlayer or as a matrix for composite electrolytes is a promising strategy to address this issue. Nevertheless, the interphase of PEO-LiTFSI and LPSCl requires further detailed investigations. This work explores the interfacial reactions between these phases using solid-state nuclear magnetic resonance. Results show that PEO facilitates the formation of a complex with LiCl and Li<sub>3</sub>PS<sub>4</sub> from LPSCl, resulting in an interphase material with limited local mobility, thus impeding ion transport. Although the addition of Br as a dopant can improve the ionic conductivity of LPSCl by inducing disorder and generating the Li vacancies, it makes the LPSCl more susceptible to PEO and increases the extent of the interfacial reaction. <sup>6</sup>Li–<sup>6</sup>Li EXSY experiments demonstrate spontaneous Li-ion exchange between the PEO and the LPSCl, yet this exchange is significantly hindered by reaction products within the PEO-LPSCl interphase, attributable to their sluggish local dynamics. This study sheds light on the complex interfacial interaction between PEO-LiTFSI and sulfide argyrodite, providing insights into designing solid electrolytes for the new generation of electrochemical devices.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141871048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信