Interfacial Synthesis of Two-Dimensional Porphyrin Polymer Films with Large Optical Nonlinearity

Fengxiang Zhao, Geping Zhang, Wei Xie, Xin Kong, Xiaomeng Duan, Yubin Fu, Jichao Zhang, Guoquan Gao, Tong Zhu, Jingcheng Hao, Hongguang Li, Renhao Dong
{"title":"Interfacial Synthesis of Two-Dimensional Porphyrin Polymer Films with Large Optical Nonlinearity","authors":"Fengxiang Zhao, Geping Zhang, Wei Xie, Xin Kong, Xiaomeng Duan, Yubin Fu, Jichao Zhang, Guoquan Gao, Tong Zhu, Jingcheng Hao, Hongguang Li, Renhao Dong","doi":"10.1002/sstr.202400152","DOIUrl":null,"url":null,"abstract":"Two-dimensional polymers (2DPs) and their layer-stacked 2D covalent organic frameworks have recently emerged as nonlinear optical (NLO) materials for potential applications in optics. However, the chemistry for designing third-order NLO 2DP films with large nonlinear absorption coefficient (<i>β</i>) has remained a mystery. Herein, three highly crystalline porphyrin-integrated 2D polyimines (named as 2DPI-Zn-Azo, 2DPI-2H-Azo, and 2DPI-Zn), which are homogeneous films showing large lateral areas over cm<sup>2</sup>, uniform transparency, and thickness of tens of nanometers are reported. Particularly, the 2DPI-Zn-Azo film comprising zinc porphyrin and –NN– displays a large saturable absorption under 532 nm and the highest <i>β</i> (−1.88 × 10<sup>5</sup> cm GW<sup>−1</sup>) among the three 2D polyimines, that is also 2–5 orders of magnitude higher than the state-of-art performance of photoactive small molecules, porphyrin-integrated 2DPs, and inorganic 2D materials. Control experiments in combination with theoretical calculation discover that the embedding of metal centers and –NN– results in highly delocalized <i>π</i>-electrons and narrow bandgap in 2DPI-Zn-Azo, which enables fast transfer of the photogenerated electrons after the light-excited charge separation, thus boosting the NLO performance. This work opens up a new path for the construction of highly efficient third-order NLO film materials, and pushes the development of 2DPs for optics and optoelectronics.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"683 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sstr.202400152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional polymers (2DPs) and their layer-stacked 2D covalent organic frameworks have recently emerged as nonlinear optical (NLO) materials for potential applications in optics. However, the chemistry for designing third-order NLO 2DP films with large nonlinear absorption coefficient (β) has remained a mystery. Herein, three highly crystalline porphyrin-integrated 2D polyimines (named as 2DPI-Zn-Azo, 2DPI-2H-Azo, and 2DPI-Zn), which are homogeneous films showing large lateral areas over cm2, uniform transparency, and thickness of tens of nanometers are reported. Particularly, the 2DPI-Zn-Azo film comprising zinc porphyrin and –NN– displays a large saturable absorption under 532 nm and the highest β (−1.88 × 105 cm GW−1) among the three 2D polyimines, that is also 2–5 orders of magnitude higher than the state-of-art performance of photoactive small molecules, porphyrin-integrated 2DPs, and inorganic 2D materials. Control experiments in combination with theoretical calculation discover that the embedding of metal centers and –NN– results in highly delocalized π-electrons and narrow bandgap in 2DPI-Zn-Azo, which enables fast transfer of the photogenerated electrons after the light-excited charge separation, thus boosting the NLO performance. This work opens up a new path for the construction of highly efficient third-order NLO film materials, and pushes the development of 2DPs for optics and optoelectronics.

Abstract Image

具有大光学非线性的二维卟啉聚合物薄膜的界面合成
二维聚合物(2DP)及其层叠二维共价有机框架近来已成为非线性光学(NLO)材料,有望应用于光学领域。然而,设计具有大非线性吸收系数(β)的三阶 NLO 2DP 薄膜的化学方法仍是一个谜。本文报告了三种高度结晶的卟啉集成二维多亚胺(命名为 2DPI-Zn-Azo、2DPI-2H-Azo 和 2DPI-Zn),它们是均匀的薄膜,具有超过 cm2 的大横向面积、均匀的透明度和数十纳米的厚度。特别是由卟啉锌和 -NN- 组成的 2DPI-Zn-Azo 薄膜在 532 纳米波长下显示出较大的饱和吸收,其 β 值(-1.88 × 105 cm GW-1)是三种二维聚酰亚胺中最高的,也比光活性小分子、卟啉集成 2DPs 和无机二维材料的性能高出 2-5 个数量级。对照实验结合理论计算发现,金属中心和 -NN- 的嵌入使得 2DPI-Zn-Azo 中的π电子高度局域化,带隙变窄,这使得光激发电荷分离后的光生电子能够快速转移,从而提高了 NLO 性能。这项工作为构建高效的三阶 NLO 薄膜材料开辟了一条新途径,推动了光学和光电子学领域 2DPs 的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信