Small StructuresPub Date : 2024-09-19DOI: 10.1002/sstr.202400345
Cong Xi, Yixin Nie, Hongjuan Wang, Cunku Dong, Jiuhui Han, Xi-Wen Du
{"title":"Thermal Methanol Synthesis from CO2 Using Cu/ZnO Catalysts: Insights from First-Principles Calculations","authors":"Cong Xi, Yixin Nie, Hongjuan Wang, Cunku Dong, Jiuhui Han, Xi-Wen Du","doi":"10.1002/sstr.202400345","DOIUrl":"https://doi.org/10.1002/sstr.202400345","url":null,"abstract":"Catalytic hydrogenation of carbon dioxide to methanol offers a promising avenue for recycling CO<sub>2</sub>, enhancing environmental sustainability. Cu/ZnO has long been identified as one of the most effective heterogeneous catalysts for this reaction, yet the detailed understanding of its reaction mechanism and active sites remains incomplete. Recent advances have highlighted the critical role of defects, such as ZnCu steps and stacking faults on Cu surfaces, in enhancing catalyst performance. Here this concept is explored through first-principles surface simulations of six models, featuring diverse Cu–Zn combinations and specific coordination environments under realistic conditions. It is revealed that Cu/ZnO catalysts with kink defects, rather than surface ZnCu alloys, exhibit optimal activity for methanol synthesis. Specifically, the findings demonstrate how intermediate configurations and rate-determining steps vary with changes in surface structure and reveal the role of the kink in promoting CO<sub>2</sub> reduction to methanol through electronic structure calculation. Moreover, it is found that the predominant synthetic pathway for CH<sub>3</sub>OH from CO<sub>2</sub> involves the reverse water gas shift and CO hydrogenation, rather than the formate route, on Cu/ZnO surfaces with kinks.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Monodispersed Iron Selenide Nanoparticles United with Carbon Nanotubes for Highly Reversible Zinc–Air Batteries","authors":"Hua Zhang, Tong Zeng, Jiale Ma, Yue Jiang, Yang Huang, Yuxin Cheng, Haifeng Ye, Cuiyun Zeng, Chenghui Zeng, Minshen Zhu, Shuiliang Chen","doi":"10.1002/sstr.202400181","DOIUrl":"https://doi.org/10.1002/sstr.202400181","url":null,"abstract":"Developing electrocatalysts that exhibit exceptional activity without relying on noble metals, all while ensuring high efficiency and durability for the oxygen reduction and evolution reactions, poses a challenging yet highly desired task. Monodispersed nanoparticles on a conductive framework through strong metal–support interactions are known to show excellent catalytic performance. Herein, monodispersed iron selenide embedded in a carbon nanotube network is synthesized. Graphitic carbon shells enclosing monodispersed iron selenide address the primary challenge of nanoparticle catalysts—aggregation and corrosion of nanoparticles over repeated oxygen redox reactions. By amplifying the interaction of Fe with carbon nanotubes, the heterogeneous catalyst forms highly active centers for oxygen redox reaction from the coordinated iron atoms, along with conductive iron–nitrogen–carbon nanotube pathways for rapid charge transfer. As a result, the heterogeneous catalyst exhibits superior activity for both oxygen reduction (<i>E</i><sub>1/2</sub> = 0.88 V) and oxygen evolution (<i>η</i> = 360 mV@10 mA cm<sup>−2</sup>) and excellent stability of negligible degradation over 5000 cycles. The overall catalytic performance surpasses the noble metals. Therefore, rechargeable zinc–air batteries using the heterogeneous catalyst exhibit a high power density of 130.9 mW cm<sup>−2</sup>, excellent round-trip efficiency of ≈70%, and cycling stability for over 1100 h at 10 mA cm<sup>−2</sup>.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small StructuresPub Date : 2024-09-19DOI: 10.1002/sstr.202400230
Liu Yang, Junchao Wang, Tingting Liu, Hanze He, Xinyu Li, Xinglai Zhang, Jing Li, Song Li, Baodan Liu
{"title":"Synergistic Catalysis of Rh Single-Atom and Clusters Supported on TiO2 Nanosheet Array for Highly Efficient Removal of CO and NOx","authors":"Liu Yang, Junchao Wang, Tingting Liu, Hanze He, Xinyu Li, Xinglai Zhang, Jing Li, Song Li, Baodan Liu","doi":"10.1002/sstr.202400230","DOIUrl":"https://doi.org/10.1002/sstr.202400230","url":null,"abstract":"Developing an efficient catalyst is the key to selective catalytic reduction (SCR) of NO<sub><i>x</i></sub> by CO (CO-SCR) to simultaneously address the pollution of toxic NO<sub><i>x</i></sub> and CO. Herein, a novel Rh/TiO<sub>2</sub>/Ti monolithic catalyst is designed and synthesized, featuring Rh species in the form of single atoms (Rh<sub>1</sub>) and clusters (Rh<sub><i>n</i></sub>). This catalyst overcomes the inhibitory effects of oxygen, achieving low-temperature NO conversion. The investigation substantively contributes insights into the strategic manipulation of active metal components, emphasizing the potential of single-atom/cluster catalysts to enhance efficiency. The Rh/TiO<sub>2</sub>/Ti catalyst has demonstrated exceptional catalytic efficacy, achieving 100% NO conversion at a low temperature of 190 °C in the presence of oxygen. Additionally, it exhibits remarkable stability and water resistance for practical applications. Moreover, comprehensive characterization confirms that Rh clusters and single-atom sites play an important role in the selective adsorption of NO and CO molecules, promoting the formation of –N<sub>2</sub>O species and ultimately resulting in the complete conversion of NO and CO to N<sub>2</sub> and CO<sub>2</sub>. This study not only provides valuable guidance for designing high-performance CO-SCR catalysts but also underscores the potential of single atoms/clusters catalytic systems in both fundamental research and industrial catalysis.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"35 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mesoporous Silica Nanoparticle Grafted Polypropylene Membrane toward Long-Term Efficient Oxygenation","authors":"Aoxing Feng, Yakai Lin, Dayin Sun, Fangyu Wu, Huanhuan Wu, Yuanhui Tang, Fanchen Zhang, Wei Jia, Lixin Yu, Xiaolin Wang, Zhenzhong Yang","doi":"10.1002/sstr.202400324","DOIUrl":"https://doi.org/10.1002/sstr.202400324","url":null,"abstract":"The trade-off between gas permeability and resistance to plasma leakage imposes a great challenge for the practical use of membranes in extracorporeal membrane oxygenation (ECMO). Herein, a polypropylene (PP) hollow-fiber composite membrane is fabricated by simply grafting mesoporous silica nanoparticles onto the commercial PP membrane, which shows a significantly enhanced gas permeability and superior resistance to plasma leakage. The performance metrics such as gas permeability, bubble point, surface hydrophobicity, and plasma leakage resistance are largely influenced by the type of functional groups on the silica nanoparticles (hydroxyl, vinyl, or trifluoropropyl). It is shown that the trifluoropropyl-group functionalized mesoporous silica nanoparticle grafted composite membrane demonstrates a superior performance than the commercial ECMO membrane of poly(4-methyl-1-pentene) (PMP). The bubble point is greatly elevated from 0.36 to 1.20 MPa while the decrease in gas flux is negligible within 4%. And the leakage resistance time is significantly prolonged from 600 to 4140 min. The gained benefits are originated from the enhanced mass transfer area and diminished surface pores of the composite membrane are grafted with the mesoporous nanoparticles. The high-performance PP-based composite membranes are cost-effective and promising in practical applications of ECMO.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"41 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small StructuresPub Date : 2024-09-19DOI: 10.1002/sstr.202400319
Junho Sung, Minji Kim, Sein Chung, Yongchan Jang, Soyoung Kim, Min-Seok Kang, Hee-Young Lee, Joonhee Kang, Donghwa Lee, Wonho Lee, Eunho Lee
{"title":"Modulating Alkyl Groups in Copolymer to Control Ion Transport in Electrolyte-Gated Organic Transistors for Neuromorphic Computing","authors":"Junho Sung, Minji Kim, Sein Chung, Yongchan Jang, Soyoung Kim, Min-Seok Kang, Hee-Young Lee, Joonhee Kang, Donghwa Lee, Wonho Lee, Eunho Lee","doi":"10.1002/sstr.202400319","DOIUrl":"https://doi.org/10.1002/sstr.202400319","url":null,"abstract":"Electrolyte-gated organic synaptic transistors (EGOSTs) have shed light on their potential in bioelectronics and neuromorphic computing. Numerous research have been studied to modulate their electrochemical doping performance and formulate a simple approach to control iontronics through the side-chain modulations; however, the effects of alkyl groups as side moieties have not been studied in detail on EGOSTs. Herein, the structural and electrical properties of conjugated polymers are systematically controlled through copolymerization with two different-alkyl group-derived monomers for enhancing the nonvolatile characteristics of EGOSTs. The relationships between crystal orientation and electrochemical doping states of conjugated copolymers, which varied with the different copolymerization ratios, are revealed. Also, the behavior of biological synapses, including paired-pulse facilitation, spike timing-dependent plasticity, and long-term potentiation/depression, are successfully simulated. In this study, new avenues are opened for the implementation of neuromorphic devices through side-chain engineering by showing that the alkyl chain modulates the doping performance.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Clustered VCoCOx Nanosheets Anchored on MXene–Ti3C2@NF as a Superior Bifunctional Electrocatalyst for Alkaline Water Splitting","authors":"Wenxin Wang, Yourong Tao, Lulu Xu, Ruilong Ye, Peng Yang, Junjie Zhu, Liping Jiang, Xingcai Wu","doi":"10.1002/sstr.202400278","DOIUrl":"https://doi.org/10.1002/sstr.202400278","url":null,"abstract":"Ti<sub>3</sub>C<sub>2</sub>, one typical MXene, has great potential to be coupled with various transition metals. Herein, a novel and effective catalyst is developed by synergistically loading VCoCO<i>x</i> onto Ti<sub>3</sub>C<sub>2</sub>-modified nickel foam (VCoCO<i>x</i>–Ti<sub>3</sub>C<sub>2</sub>@NF). Field emission scanning electron microscope and high-resolution transmission electron microscopy are employed to characterize the morphology and structure. As expected, the catalyst optimized by response surface methodology attains overpotentials of 290 and 64 mV and Tafel slopes of 82 and 79 mV dec<sup>−1</sup> for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively. By using the bifunctional VCoCO<i>x</i>–Ti<sub>3</sub>C<sub>2</sub>@NF catalyst, the water splitting current density achieves 10 mA cm<sup>−2</sup> in 1.0 mol L<sup>−1</sup> KOH electrolyte at cell voltage of 1.52 V, comparable with the noble metal electrolyzer Pt@C@NF||RuO<sub>2</sub>@NF (1.57 V). Furthermore, the resulting catalyst exhibits excellent cycling durability after 120 h of continuous catalysis, which retains 103.8% and 105.4% of potential (V vs reversible hydrogen electrode) for OER and HER, respectively. Density functional theory calculation reveals that the Gibbs free energy barriers for the OER and HER intermediates are reduced due to the integration of VCoCO<sub><i>x</i></sub> with Ti<sub>3</sub>C<sub>2</sub>@NF. The fabricated VCoCO<i>x</i>–Ti<sub>3</sub>C<sub>2</sub>@NF catalyst is a promising electrochemical material for clean energy production.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"195 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small StructuresPub Date : 2024-09-19DOI: 10.1002/sstr.202400303
Claire Hotton, Daniel García-Lojo, Evgeny Modin, Rahul Nag, Sergio Gómez-Graña, Jules Marcone, Jaime Gabriel Trazo, Jennifer Bodin, Claire Goldmann, Thomas Bizien, Isabel Pastoriza-Santos, Brigitte Pansu, Jorge Pérez-Juste, Victor Balédent, Cyrille Hamon
{"title":"Elucidating Supercrystal Mechanics and Nanoparticle Size and Shape Effects under High Pressure","authors":"Claire Hotton, Daniel García-Lojo, Evgeny Modin, Rahul Nag, Sergio Gómez-Graña, Jules Marcone, Jaime Gabriel Trazo, Jennifer Bodin, Claire Goldmann, Thomas Bizien, Isabel Pastoriza-Santos, Brigitte Pansu, Jorge Pérez-Juste, Victor Balédent, Cyrille Hamon","doi":"10.1002/sstr.202400303","DOIUrl":"https://doi.org/10.1002/sstr.202400303","url":null,"abstract":"Supercrystals, extended lattices of closely packed nanoparticles (NPs), present exciting possibilities for various applications. Under high pressures, typically in the gigapascal (GPa) range, supercrystals undergo significant structural changes, including adjustable interparticle distances, phase transformations, and the formation of new nanostructures through coalescence. While prior research has focused on ligand engineering's impact on supercrystal mechanical response, the influence of NP shape remains unexplored, especially for NPs larger than 10 nm coated with hydrosoluble ligands. This study examines the effects of NP shape on the mechanical properties of supercrystals using high-pressure small-angle X-ray scattering and focused ion beam–scanning electron microscopy tomography. Notably, supercrystals exhibit higher hardness levels compared to previously reported values for gold supercrystals, attributed to the use of larger NPs. Spherical and tetrahedral NPs rearrange before collapsing under pressure, whereas rods and octahedra coalesce without prior structural rearrangement, likely due to their higher packing fraction. Additionally, anisotropic deformation of NP lattices and sintering does not always correlate with deviatoric stresses. These findings refine the understanding of complex processes governing supercrystal structure under high pressure, opening new avenues for NP engineering and advancing plasmonic applications under extreme conditions.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"190 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small StructuresPub Date : 2024-09-09DOI: 10.1002/sstr.202400234
Marcin Giza, Aleksey Kozikov, Paula L. Lalaguna, Jake D. Hutchinson, Vaibhav Verma, Benjamin Vella, Rahul Kumar, Nathan Hill, Dumitru Sirbu, Elisabetta Arca, Noel Healy, Rebecca L. Milot, Malcolm Kadodwala, Pablo Docampo
{"title":"Illuminating the Devolution of Perovskite Passivation Layers","authors":"Marcin Giza, Aleksey Kozikov, Paula L. Lalaguna, Jake D. Hutchinson, Vaibhav Verma, Benjamin Vella, Rahul Kumar, Nathan Hill, Dumitru Sirbu, Elisabetta Arca, Noel Healy, Rebecca L. Milot, Malcolm Kadodwala, Pablo Docampo","doi":"10.1002/sstr.202400234","DOIUrl":"https://doi.org/10.1002/sstr.202400234","url":null,"abstract":"Surface treatment of perovskite materials with their layered counterparts has become an ubiquitous strategy for maximizing device performance. While layered materials confer great benefits to the longevity and long-term efficiency of the resulting device stack via passivation of defects and surface traps, numerous reports have previously demonstrated that these materials evolve under exposure to light and humidity, suggesting that they are not fully stable. Therefore, it is crucial to study the behavior of these materials in isolation and in conditions mimicking a device stack. Here, it is shown that perovskite capping layers templated by a range of cations on top of methylammonium lead iodide devolve in conditions commonly found during perovskite fabrication, such as exposure to light, solvent, and moisture. Photophysical, structural, and morphological studies are used to show that the degradation of these layered perovskites occurs via a self-limiting, pinhole-mediated mechanism. This results in the loss of whole perovskite sheets, from a few monolayers to tens of nanometers of material, until the system stabilizes again as demonstrated for exfoliated flakes of PEA<sub>2</sub>PbI<sub>4</sub>. This means that initially targeted structures may have devolved, with clear optimization implications for device fabrication.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small StructuresPub Date : 2024-09-09DOI: 10.1002/sstr.202400381
Hao Ding, Jingyu Hou, Kun Zhai, Xin Gao, Junquan Huang, Feng Ke, Bingchao Yang, Congpu Mu, Fusheng Wen, Jianyong Xiang, Bochong Wang, Tianyu Xue, Anmin Nie, Xiaobing Liu, Lin Wang, Xiang-Feng Zhou, Zhongyuan Liu
{"title":"Pressure-Enhanced Superconductivity and Structural Phase Transition in Layered Sn4P3","authors":"Hao Ding, Jingyu Hou, Kun Zhai, Xin Gao, Junquan Huang, Feng Ke, Bingchao Yang, Congpu Mu, Fusheng Wen, Jianyong Xiang, Bochong Wang, Tianyu Xue, Anmin Nie, Xiaobing Liu, Lin Wang, Xiang-Feng Zhou, Zhongyuan Liu","doi":"10.1002/sstr.202400381","DOIUrl":"https://doi.org/10.1002/sstr.202400381","url":null,"abstract":"High pressure provides a unique tuning method depending on structure modulation to explore the structure–property relationship. Herein, the pressure-induced structural phase transformation and enhanced superconductivity in a layered binary phosphide Sn<sub>4</sub>P<sub>3</sub> are reported. Comprehensive measurements using in situ synchrotron X-Ray diffraction and Raman spectroscopy reveal a structural phase transition with mild distortion of SnP<sub>3</sub> building blocks and interlayer shrinkage under high pressure. This differs from a conventional trigonal SnAs(P)<sub>3</sub> to square SnAs(P)<sub>4</sub> topotactic transition in SnAs(P)-based compound. Through this structure reconstruction under high pressure, electron distribution has been reorganized and phonons have softened, facilitating a high superconducting temperature (<i>T</i><sub>c</sub>) value of 7.8 K at 34.9 GPa, which is almost six times higher than its ambient value. The study introduces a new transition route in layered SnAs/SnP-based intermetallic materials and provides insight into the structural and electronic changes under high pressure for Sn<sub>4</sub>P<sub>3</sub>.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"36 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}