Small Structures最新文献

筛选
英文 中文
Exceptional High-Performance Oxygen Transport Membrane and Comprehensive Study on Mass/Charge Transport Properties 卓越的高性能氧气传输膜和有关质量/电荷传输特性的综合研究
Small Structures Pub Date : 2024-06-03 DOI: 10.1002/sstr.202400095
Hohan Bae, Gyeong Duk Nam, Yeon Namgung, Kwangho Park, Jun-Young Park, José M. Serra, Jong Hoon Joo, Sun-Ju Song
{"title":"Exceptional High-Performance Oxygen Transport Membrane and Comprehensive Study on Mass/Charge Transport Properties","authors":"Hohan Bae, Gyeong Duk Nam, Yeon Namgung, Kwangho Park, Jun-Young Park, José M. Serra, Jong Hoon Joo, Sun-Ju Song","doi":"10.1002/sstr.202400095","DOIUrl":"https://doi.org/10.1002/sstr.202400095","url":null,"abstract":"This study focuses on mixed-conducting perovskite membranes for efficient oxygen supply, aiming to replace energy-intensive cryogenic distillation with a more practical alternative. A La and Nb co-doped BaCoO<sub>3−<i>δ</i></sub> perovskite is introduced, Ba<sub>0.95</sub>La<sub>0.05</sub>Co<sub>0.8</sub>Fe<sub>0.12</sub>Nb<sub>0.08</sub>O<sub>3−<i>δ</i></sub> (BLCFN) with a record-breaking oxygen permeation flux, surpassing all known single-phase perovskite membranes. To elucidate its superior membrane performance, the mass/charge transport properties and equilibrium bulk properties are investigated and quantitative indicators (<i>D</i><sub>O</sub> = 5.8 × 10<sup>−6</sup> cm<sup>2</sup> s<sup>−1</sup>, <i>k</i><sub>O</sub> = 1.0 × 10<sup>−4</sup> cm s<sup>−1</sup>, <i>σ</i><sub>ion</sub> = 0.93 S cm<sup>−1</sup> at 900 °C) reveal fast diffusion and excellent surface gas-exchange kinetics. The oxygen permeability of 12.4 mL cm<sup>−2</sup> min<sup>−1</sup> and over 200 h of long-term stability is achieved in an air/He atmosphere at 900 °C. By presenting a material that demonstrates higher performance than Ba<sub>0.5</sub>Sr<sub>0.5</sub>Co<sub>0.8</sub>Fe<sub>0.2</sub>O<sub>3−<i>δ</i></sub> (BSCF), currently known for its highest permeability, it is believed that this marks a significant step toward innovative performance enhancement of perovskite oxide-based membranes.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"41 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141257501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifold Fermions Boosted Hydrogen Evolution Reaction Catalysis in Cubic Palladium Bronze LaPd3S4 多倍费米子促进立方钯青铜 LaPd3S4 中的氢气进化反应催化作用
Small Structures Pub Date : 2024-06-03 DOI: 10.1002/sstr.202400175
Yang Li, Jialin Gong, Xiaotian Wang
{"title":"Multifold Fermions Boosted Hydrogen Evolution Reaction Catalysis in Cubic Palladium Bronze LaPd3S4","authors":"Yang Li, Jialin Gong, Xiaotian Wang","doi":"10.1002/sstr.202400175","DOIUrl":"https://doi.org/10.1002/sstr.202400175","url":null,"abstract":"Topological materials are currently considered excellent catalysts for heterogeneous processes because of their surface metallic states and excellent carrier mobility. This work will show that cubic palladium bronze LaPd<sub>3</sub>S<sub>4</sub> is an ideal topological material with multifold fermions, Fermi arcs on the (001) surface, and high catalytic performance for electrochemical hydrogen evolution reactions (HER). A direct correlation has been discovered between the position of the multifold fermions (related to the Fermi level) and Gibbs free energy (Δ<i>G</i><sub>H*</sub>). Moreover, by applying the vertical electric field and uniaxial strain to the LaPd<sub>3</sub>S<sub>4</sub>, the multifold fermions disappear, and the |Δ<i>G</i><sub>H*</sub>| increases, weakening the HER activity. This correlation establishes a clear connection between increased catalytic performance and topological states and fully elucidates the underlying process in topological catalysis.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"30 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141259823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D Superstructures Consisting of Intersecting Gold Lamellae Formed by a Micelle-Mediated Anisotropic Growth Approach 由微胶囊介导的各向异性生长方法形成的由相交的金薄片组成的三维超结构
Small Structures Pub Date : 2024-05-26 DOI: 10.1002/sstr.202400072
Jiaxin Rui, Meng Chen, Tingting Wu, Xuzhi Shi, Wei Lu, Meng Dang, Xiaolin Han, Ning Wang, Yuru Wang, Xiaodan Su, Zhaogang Teng
{"title":"3D Superstructures Consisting of Intersecting Gold Lamellae Formed by a Micelle-Mediated Anisotropic Growth Approach","authors":"Jiaxin Rui, Meng Chen, Tingting Wu, Xuzhi Shi, Wei Lu, Meng Dang, Xiaolin Han, Ning Wang, Yuru Wang, Xiaodan Su, Zhaogang Teng","doi":"10.1002/sstr.202400072","DOIUrl":"https://doi.org/10.1002/sstr.202400072","url":null,"abstract":"3D superstructures (3DSs) have attracted increasing interest because of the collective synergistic effects of individual building units, but their customization relies on tedious multistep strategy or high-end nanofabrication technology. Herein, for the first time, a facile block copolymer micelle-mediated anisotropic growth approach is reported to fabricate gold 3DSs consisting of tunable and intersecting lamellae with sawtooth-like edges. The preparation of the 3DSs depends on the mediation of reduction kinetics of gold precursors and adsorption of block copolymer micelles on gold crystal surfaces using disulfiram as ligands. The thickness of lamellae in the 3DSs is controllable from ≈21 to 102 nm by adjusting the weight fraction of the micellar hydrophobicity blocks and the composed lamellar number is regulated from ≈3 to ≈30. Additional morphologies, such as a dendritic mesoporous structure and meatball-like shapes, are obtained through controlling the extent of micelle swelling. Finite-difference time-domain simulations demonstrate that the unique 3DSs of gold lamellae with sawtooth-like edges form abundant hotspots giving rise to surface-enhanced Raman scattering (SERS). The 3DSs exhibit strong electromagnetic field enhancement and excellent performance as SERS substrates for detecting 4-mercaptobenzoic acid.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"33 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141173024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible, Photonic Films of Surfactant-Functionalized Cellulose Nanocrystals for Pressure and Humidity Sensing 用于压力和湿度传感的表面活性剂功能化纤维素纳米晶体柔性光子薄膜
Small Structures Pub Date : 2024-05-23 DOI: 10.1002/sstr.202400104
Diogo V. Saraiva, Steven N. Remiëns, Ethan I. L. Jull, Ivo R. Vermaire, Lisa Tran
{"title":"Flexible, Photonic Films of Surfactant-Functionalized Cellulose Nanocrystals for Pressure and Humidity Sensing","authors":"Diogo V. Saraiva, Steven N. Remiëns, Ethan I. L. Jull, Ivo R. Vermaire, Lisa Tran","doi":"10.1002/sstr.202400104","DOIUrl":"https://doi.org/10.1002/sstr.202400104","url":null,"abstract":"Most paints contain pigments that absorb light and fade over time. A robust alternative can be found in nature, where structural coloration arises from the interference of light with submicron features. Plant-derived, cellulose nanocrystals (CNCs) mimic these features by self-assembling into a cholesteric liquid crystal that exhibits structural coloration when dried. While much research has been done on CNCs in aqueous solutions, less is known about transferring CNCs to apolar solvents that are widely employed in paints. This study uses a common surfactant in agricultural and industrial products to suspend CNCs in toluene . Surprisingly, a stable liquid crystal phase is formed within hours, even with concentrations of up to 50 wt%. Evaporating the apolar CNC suspensions results in photonic films with peak wavelengths ranging from 660 to 920 nm. The resulting flexible films have variable mechanical properties with surfactant content, allowing for an optical response with applied force. The films also act as humidity sensors, with increasing relative humidity swelling the films, yielding a redshift in the reflected wavelength. With the addition of a single surfactant, CNCs can be made compatible with existing production methods of industrial coatings, while improving the strength and responsiveness of structurally colored films to external stimuli.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141172914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enabling Highly Efficient Neodymium Luminescence for Near‐Infrared Phosphor‐Converted Light‐Emitting Diode Applications 为近红外荧光粉转换发光二极管应用提供高效钕发光功能
Small Structures Pub Date : 2024-05-23 DOI: 10.1002/sstr.202400092
Kaina Wang, Jipeng Fu, Hongliang Dong, Bingyu Huang, Jinru Liu, Long Tian, Jing Feng, Chunzhen Yang, Chenjie Lou, Ligang Xu, Tianyi Sun, Huajie Luo, Shiqing Xu, Guowei Yin, Hongjie Zhang, Mingxue Tang
{"title":"Enabling Highly Efficient Neodymium Luminescence for Near‐Infrared Phosphor‐Converted Light‐Emitting Diode Applications","authors":"Kaina Wang, Jipeng Fu, Hongliang Dong, Bingyu Huang, Jinru Liu, Long Tian, Jing Feng, Chunzhen Yang, Chenjie Lou, Ligang Xu, Tianyi Sun, Huajie Luo, Shiqing Xu, Guowei Yin, Hongjie Zhang, Mingxue Tang","doi":"10.1002/sstr.202400092","DOIUrl":"https://doi.org/10.1002/sstr.202400092","url":null,"abstract":"Near‐infrared (NIR) phosphors have been widely used in biomedical applications based on their deep tissue penetration. However, the lack of blue‐pumped NIR phosphors with emission ranges beyond 1000 nm has greatly limited the development of NIR phosphor‐converted light‐emitting diodes (pc‐LEDs). Herein, a facile way to boost the luminescence efficiency and thermal stability by introducing the promoters of Ce3+ and Na+ into Nd3+‐doped SrS NIR phosphor is demonstrated, thus achieving light emitting at 850–1500 nm with a peak wavelength of ≈1070 nm. Through sensitization by the allowed 4f → 5d transition of Ce3+, the SrS: Nd3+ phosphors are excitable by using a commercial blue LED, attributing to the effective energy transfer between Nd3+ and Ce3+. Besides, the structural analysis and density functional theory calculations reveal the lattice distortion mechanism and geometry of doping ions contributed to the weakened thermal quenching effect and the increasing of internal quantum efficiency. The optimized NIR phosphor luminescence intensity remains at 91.8% of the initial intensity at 393 K, and the internal quantum efficiency increases to 42.8% from 31.7% of the sample without Na+ doping. The present exploration of Nd3+‐doped NIR phosphors will provide a reference for designing NIR pc‐LEDs with enhanced properties.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"20 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141104932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of Porous Connected Cryoaerogel Networks from Cadmium Chalcogenide Nanoplatelet Stacks 利用钙化镓纳米颗粒堆合成多孔连接的冷凝胶网络
Small Structures Pub Date : 2024-05-23 DOI: 10.1002/sstr.202300554
R. Graf, D. Pluta, Adrian Hannebauer, Jakob Schlenkrich, N. Bigall
{"title":"Synthesis of Porous Connected Cryoaerogel Networks from Cadmium Chalcogenide Nanoplatelet Stacks","authors":"R. Graf, D. Pluta, Adrian Hannebauer, Jakob Schlenkrich, N. Bigall","doi":"10.1002/sstr.202300554","DOIUrl":"https://doi.org/10.1002/sstr.202300554","url":null,"abstract":"Cadmium chalcogenide nanoplatelets (NPLs) are not only known due to their unique optical properties but also because of their ability to self‐assemble into stacks with new collective properties. Only recently, a stacking process in an aqueous medium has been demonstrated, which opens up possible applications and methods such as gelation. Nanoparticle‐based aerogels gain a lot of attention due to their high relative surface areas and porosity and thus, high potential for catalytic applications. Herein, the positive properties of aerogels to the NPL‐stack system by cryoaerogelation of destabilized NPL dispersions are introduced. After the addition of an antisolvent to initiate the stacking, the dispersion is flash‐frozen with liquid nitrogen and freeze‐dried. By this method, porous cryoaerogel networks result in high surface areas and retained stacking of the NPLs. The formed stack‐gels are investigated by electron microscopy and physisorption measurements. Optical and photoelectrochemical measurements verify the charge carrier transport within the stack‐gel network.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"48 34","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141102961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exceptionally Stable Cobalt Nanoclusters on Functionalized Graphene 功能化石墨烯上异常稳定的钴纳米团簇
Small Structures Pub Date : 2024-05-23 DOI: 10.1002/sstr.202400055
V. Chesnyak, Srdjan Stavrić, M. Panighel, Daniele Povoledo, S. del Puppo, M. Peressi, Giovanni Comelli, C. Africh
{"title":"Exceptionally Stable Cobalt Nanoclusters on Functionalized Graphene","authors":"V. Chesnyak, Srdjan Stavrić, M. Panighel, Daniele Povoledo, S. del Puppo, M. Peressi, Giovanni Comelli, C. Africh","doi":"10.1002/sstr.202400055","DOIUrl":"https://doi.org/10.1002/sstr.202400055","url":null,"abstract":"\u0000To improve reactivity and achieve a higher material efficiency, catalysts are often used in the form of clusters with nanometer dimensions, down to single atoms. Since the corresponding properties are highly structure‐dependent, a suitable support is thus required to ensure cluster stability during operating conditions. Herein, an efficient method to stabilize cobalt nanoclusters on graphene grown on nickel substrates, exploiting the anchoring effect of nickel atoms incorporated in the carbon network is presented. The anchored nanoclusters are studied by in situ variable temperature scanning tunneling microscopy at different temperatures and upon gas exposure. Cluster stability upon annealing up to 200 °C and upon CO exposure at least up to 1 × 10−6 mbar CO partial pressure is demonstrated. Moreover, the dimensions of the cobalt nanoclusters remain surprisingly small (<3 nm diameter) with a narrow size distribution. Density functional theory calculations demonstrate that the interplay between the low diffusion barrier on graphene on nickel and the strong anchoring effect of the nickel atoms leads to the increased stability and size selectivity of these clusters. This anchoring technique is expected to be applicable also to other cases, with clear advantages for transition metals that are usually difficult to stabilize.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"65 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141105939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailoring Mechanical Properties and Shear Band Propagation in ZrCu Metallic Glass Nanolaminates Through Chemical Heterogeneities and Interface Density 通过化学异质性和界面密度定制 ZrCu 金属玻璃纳米层压板的机械特性和剪切带传播
Small Structures Pub Date : 2024-05-19 DOI: 10.1002/sstr.202400011
A. Brognara, Ankush Kashiwar, C. Jung, Xukai Zhang, Ali Ahmadian, N. Gauquelin, J. Verbeeck, Philippe Djemia, Damien Faurie, G. Dehm, H. Idrissi, J. P. Best, M. Ghidelli
{"title":"Tailoring Mechanical Properties and Shear Band Propagation in ZrCu Metallic Glass Nanolaminates Through Chemical Heterogeneities and Interface Density","authors":"A. Brognara, Ankush Kashiwar, C. Jung, Xukai Zhang, Ali Ahmadian, N. Gauquelin, J. Verbeeck, Philippe Djemia, Damien Faurie, G. Dehm, H. Idrissi, J. P. Best, M. Ghidelli","doi":"10.1002/sstr.202400011","DOIUrl":"https://doi.org/10.1002/sstr.202400011","url":null,"abstract":"The design of high‐performance structural thin films consistently seeks to achieve a delicate equilibrium by balancing outstanding mechanical properties like yield strength, ductility, and substrate adhesion, which are often mutually exclusive. Metallic glasses (MGs) with their amorphous structure have superior strength, but usually poor ductility with catastrophic failure induced by shear bands (SBs) formation. Herein, we introduce an innovative approach by synthesizing MGs characterized by large and tunable mechanical properties, pioneering a nanoengineering design based on the control of nanoscale chemical/structural heterogeneities. This is realized through a simplified model Zr24Cu76/Zr61Cu39, fully amorphous nanocomposite with controlled nanoscale periodicity (Λ, from 400 down to 5 nm), local chemistry, and glass–glass interfaces, while focusing in‐depth on the SB nucleation/propagation processes. The nanolaminates enable a fine control of the mechanical properties, and an onset of crack formation/percolation (>1.9 and 3.3%, respectively) far above the monolithic counterparts. Moreover, we show that SB propagation induces large chemical intermixing, enabling a brittle‐to‐ductile transition when Λ ≤ 50 nm, reaching remarkably large plastic deformation of 16% in compression and yield strength ≈2 GPa. Overall, the nanoengineered control of local heterogeneities leads to ultimate and tunable mechanical properties opening up a new approach for strong and ductile materials.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"35 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141123477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving Thermal Stability of Perovskite Solar Cells by Suppressing Ion Migration 通过抑制离子迁移提高过氧化物太阳能电池的热稳定性
Small Structures Pub Date : 2024-05-16 DOI: 10.1002/sstr.202400132
Yifeng Shi, Yifan Zheng, Xun Xiao, Yan Li, Dianfu Feng, Guodong Zhang, Yang Zhang, Tao Li, Yuchuan Shao
{"title":"Improving Thermal Stability of Perovskite Solar Cells by Suppressing Ion Migration","authors":"Yifeng Shi, Yifan Zheng, Xun Xiao, Yan Li, Dianfu Feng, Guodong Zhang, Yang Zhang, Tao Li, Yuchuan Shao","doi":"10.1002/sstr.202400132","DOIUrl":"https://doi.org/10.1002/sstr.202400132","url":null,"abstract":"Ion migration presents a formidable obstacle to the stability and performance of perovskite solar cells (PSCs), hindering their progress toward commercial feasibility. Herein, the degradation mechanism of PSCs caused by iodide ion migration, which leads to abnormal changes in photoluminescence transients at the buried interface of perovskite films, is investigated. In light of this problem, a novel strategy is proposed to mitigate ion migration by introducing poly(2‐vinylnaphthalene) into poly[bis(4‐phenyl)(2,4,6‐trimethylphenyl)amine] as the hole transport layer with improved ion‐blocking capability. Consequently, this layer effectively reduces defect concentration, suppresses ion migration, and modulates energy level alignment, leading to an impressive efficiency exceeding 23% for doctor‐bladed FAPbI3 PSCs. Moreover, the corresponding unencapsulated devices demonstrate remarkable durability, maintaining over 80% of their initial value after undergoing rigorous stress tests in accordance with the International Electrotechnical Commission 61215 standard for temperature, humidity, and illumination. These tests include 1000 h of thermal cycling and a long‐term operational test lasting 600 h under maximum power point tracking.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"28 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140969776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low‐Temperature Epitaxy of Perovskite WO3 Thin Films under Atmospheric Conditions 大气条件下过氧化物 WO3 薄膜的低温外延
Small Structures Pub Date : 2024-05-16 DOI: 10.1002/sstr.202400089
Zhuotong Sun, Ziyi Yuan, Ming Xiao, Simon M. Fairclough, Atif Jan, Giuliana Di Martino, Caterina Ducati, N. Strkalj, Judith L. MacManus‐Driscoll
{"title":"Low‐Temperature Epitaxy of Perovskite WO3 Thin Films under Atmospheric Conditions","authors":"Zhuotong Sun, Ziyi Yuan, Ming Xiao, Simon M. Fairclough, Atif Jan, Giuliana Di Martino, Caterina Ducati, N. Strkalj, Judith L. MacManus‐Driscoll","doi":"10.1002/sstr.202400089","DOIUrl":"https://doi.org/10.1002/sstr.202400089","url":null,"abstract":"As Si electronics hits fundamental performance limits, oxide integration emerges as a solution to augment the next generation of electronic and optical devices. Specifically, oxide perovskites provide diverse functionalities with a potential to create, tune, and combine emergent phenomena at interfaces. High‐level crystalline order is needed to realize these functionalities, often achieved through epitaxy. However, large‐scale implementation in consumer devices faces challenges due to the need for high‐temperature deposition in complex vacuum systems. Herein, this challenge is addressed using atmospheric pressure spatial chemical vapor deposition, a thin‐film fabrication technique that can rapidly produce uniform films at sub‐400 °C temperatures under atmospheric conditions over ≈cm2 areas. Thus, the deposition of epitaxial perovskite tungsten trioxide, WO3, thin films is demonstrated at a rate of 5 nm min−2 on single‐crystal substrates at 350 °C in open‐air conditions enabling a high‐throughput process. The resulting films exhibit crystallographic and electronic properties comparable to vacuum‐based growth above 500 °C. The high‐quality epitaxy is attributed to the energetics of the exothermic decomposition reaction of the W[CO]6 precursors combined with the stabilization of a hot zone near the substrate surface. From this work, the way can be paved for low‐temperature atmospheric‐pressure epitaxy of a wide range of other perovskite thin films.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140966674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信