Low‐Temperature Epitaxy of Perovskite WO3 Thin Films under Atmospheric Conditions

Zhuotong Sun, Ziyi Yuan, Ming Xiao, Simon M. Fairclough, Atif Jan, Giuliana Di Martino, Caterina Ducati, N. Strkalj, Judith L. MacManus‐Driscoll
{"title":"Low‐Temperature Epitaxy of Perovskite WO3 Thin Films under Atmospheric Conditions","authors":"Zhuotong Sun, Ziyi Yuan, Ming Xiao, Simon M. Fairclough, Atif Jan, Giuliana Di Martino, Caterina Ducati, N. Strkalj, Judith L. MacManus‐Driscoll","doi":"10.1002/sstr.202400089","DOIUrl":null,"url":null,"abstract":"As Si electronics hits fundamental performance limits, oxide integration emerges as a solution to augment the next generation of electronic and optical devices. Specifically, oxide perovskites provide diverse functionalities with a potential to create, tune, and combine emergent phenomena at interfaces. High‐level crystalline order is needed to realize these functionalities, often achieved through epitaxy. However, large‐scale implementation in consumer devices faces challenges due to the need for high‐temperature deposition in complex vacuum systems. Herein, this challenge is addressed using atmospheric pressure spatial chemical vapor deposition, a thin‐film fabrication technique that can rapidly produce uniform films at sub‐400 °C temperatures under atmospheric conditions over ≈cm2 areas. Thus, the deposition of epitaxial perovskite tungsten trioxide, WO3, thin films is demonstrated at a rate of 5 nm min−2 on single‐crystal substrates at 350 °C in open‐air conditions enabling a high‐throughput process. The resulting films exhibit crystallographic and electronic properties comparable to vacuum‐based growth above 500 °C. The high‐quality epitaxy is attributed to the energetics of the exothermic decomposition reaction of the W[CO]6 precursors combined with the stabilization of a hot zone near the substrate surface. From this work, the way can be paved for low‐temperature atmospheric‐pressure epitaxy of a wide range of other perovskite thin films.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sstr.202400089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As Si electronics hits fundamental performance limits, oxide integration emerges as a solution to augment the next generation of electronic and optical devices. Specifically, oxide perovskites provide diverse functionalities with a potential to create, tune, and combine emergent phenomena at interfaces. High‐level crystalline order is needed to realize these functionalities, often achieved through epitaxy. However, large‐scale implementation in consumer devices faces challenges due to the need for high‐temperature deposition in complex vacuum systems. Herein, this challenge is addressed using atmospheric pressure spatial chemical vapor deposition, a thin‐film fabrication technique that can rapidly produce uniform films at sub‐400 °C temperatures under atmospheric conditions over ≈cm2 areas. Thus, the deposition of epitaxial perovskite tungsten trioxide, WO3, thin films is demonstrated at a rate of 5 nm min−2 on single‐crystal substrates at 350 °C in open‐air conditions enabling a high‐throughput process. The resulting films exhibit crystallographic and electronic properties comparable to vacuum‐based growth above 500 °C. The high‐quality epitaxy is attributed to the energetics of the exothermic decomposition reaction of the W[CO]6 precursors combined with the stabilization of a hot zone near the substrate surface. From this work, the way can be paved for low‐temperature atmospheric‐pressure epitaxy of a wide range of other perovskite thin films.

Abstract Image

大气条件下过氧化物 WO3 薄膜的低温外延
随着硅电子器件的基本性能达到极限,氧化物集成成为增强下一代电子和光学器件的解决方案。具体来说,氧化物包晶提供了多种功能,有可能在界面上创造、调整和组合新出现的现象。要实现这些功能,需要较高的晶序,通常通过外延来实现。然而,由于需要在复杂的真空系统中进行高温沉积,消费类设备的大规模应用面临着挑战。在此,我们采用大气压空间化学气相沉积技术来应对这一挑战,这种薄膜制造技术可在大气条件下以低于 400 °C 的温度在 ≈cm2 的面积上快速生成均匀的薄膜。因此,在 350 °C 的露天条件下,以 5 nm min-2 的速度在单晶基底上沉积外延包晶三氧化钨(WO3)薄膜,实现了高通量工艺。所得薄膜的晶体学和电子特性可与 500 °C 以上的真空生长相媲美。高质量的外延归功于 W[CO]6 前驱体放热分解反应的能量学原理,以及基底表面附近热区的稳定。从这项工作出发,可以为其他各种包晶体薄膜的低温常压外延铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信