Enabling Highly Efficient Neodymium Luminescence for Near‐Infrared Phosphor‐Converted Light‐Emitting Diode Applications

Kaina Wang, Jipeng Fu, Hongliang Dong, Bingyu Huang, Jinru Liu, Long Tian, Jing Feng, Chunzhen Yang, Chenjie Lou, Ligang Xu, Tianyi Sun, Huajie Luo, Shiqing Xu, Guowei Yin, Hongjie Zhang, Mingxue Tang
{"title":"Enabling Highly Efficient Neodymium Luminescence for Near‐Infrared Phosphor‐Converted Light‐Emitting Diode Applications","authors":"Kaina Wang, Jipeng Fu, Hongliang Dong, Bingyu Huang, Jinru Liu, Long Tian, Jing Feng, Chunzhen Yang, Chenjie Lou, Ligang Xu, Tianyi Sun, Huajie Luo, Shiqing Xu, Guowei Yin, Hongjie Zhang, Mingxue Tang","doi":"10.1002/sstr.202400092","DOIUrl":null,"url":null,"abstract":"Near‐infrared (NIR) phosphors have been widely used in biomedical applications based on their deep tissue penetration. However, the lack of blue‐pumped NIR phosphors with emission ranges beyond 1000 nm has greatly limited the development of NIR phosphor‐converted light‐emitting diodes (pc‐LEDs). Herein, a facile way to boost the luminescence efficiency and thermal stability by introducing the promoters of Ce3+ and Na+ into Nd3+‐doped SrS NIR phosphor is demonstrated, thus achieving light emitting at 850–1500 nm with a peak wavelength of ≈1070 nm. Through sensitization by the allowed 4f → 5d transition of Ce3+, the SrS: Nd3+ phosphors are excitable by using a commercial blue LED, attributing to the effective energy transfer between Nd3+ and Ce3+. Besides, the structural analysis and density functional theory calculations reveal the lattice distortion mechanism and geometry of doping ions contributed to the weakened thermal quenching effect and the increasing of internal quantum efficiency. The optimized NIR phosphor luminescence intensity remains at 91.8% of the initial intensity at 393 K, and the internal quantum efficiency increases to 42.8% from 31.7% of the sample without Na+ doping. The present exploration of Nd3+‐doped NIR phosphors will provide a reference for designing NIR pc‐LEDs with enhanced properties.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sstr.202400092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Near‐infrared (NIR) phosphors have been widely used in biomedical applications based on their deep tissue penetration. However, the lack of blue‐pumped NIR phosphors with emission ranges beyond 1000 nm has greatly limited the development of NIR phosphor‐converted light‐emitting diodes (pc‐LEDs). Herein, a facile way to boost the luminescence efficiency and thermal stability by introducing the promoters of Ce3+ and Na+ into Nd3+‐doped SrS NIR phosphor is demonstrated, thus achieving light emitting at 850–1500 nm with a peak wavelength of ≈1070 nm. Through sensitization by the allowed 4f → 5d transition of Ce3+, the SrS: Nd3+ phosphors are excitable by using a commercial blue LED, attributing to the effective energy transfer between Nd3+ and Ce3+. Besides, the structural analysis and density functional theory calculations reveal the lattice distortion mechanism and geometry of doping ions contributed to the weakened thermal quenching effect and the increasing of internal quantum efficiency. The optimized NIR phosphor luminescence intensity remains at 91.8% of the initial intensity at 393 K, and the internal quantum efficiency increases to 42.8% from 31.7% of the sample without Na+ doping. The present exploration of Nd3+‐doped NIR phosphors will provide a reference for designing NIR pc‐LEDs with enhanced properties.

Abstract Image

为近红外荧光粉转换发光二极管应用提供高效钕发光功能
近红外(NIR)荧光粉具有深层组织穿透力,因此已广泛应用于生物医学领域。然而,由于缺乏发射范围超过 1000 纳米的蓝光泵浦近红外荧光粉,近红外荧光粉转换发光二极管(pc-LED)的发展受到了很大限制。本文展示了一种简便的方法,通过在掺杂 Nd3+ 的 SrS 近红外荧光粉中引入 Ce3+ 和 Na+ 的促进剂来提高发光效率和热稳定性,从而实现 850-1500 nm 的发光,峰值波长≈1070 nm。通过 Ce3+ 允许的 4f → 5d 转变的敏化作用,SrS:Nd3+荧光粉可被商用蓝光 LED 激发,这归功于 Nd3+ 和 Ce3+ 之间的有效能量转移。此外,结构分析和密度泛函理论计算揭示了掺杂离子的晶格畸变机制和几何形状有助于减弱热淬灭效应和提高内部量子效率。优化后的近红外荧光粉在 393 K 时的发光强度保持在初始强度的 91.8%,而内量子效率则从未掺杂 Na+ 样品的 31.7%提高到 42.8%。本研究对掺杂 Nd3+ 的近红外荧光粉的探索将为设计性能更强的近红外 pc-LED 提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信