Small Structures最新文献

筛选
英文 中文
Enabling High Capacity and Stable Sodium Capture in Simulated Saltwater by Highly Crystalline Prussian Blue Analogues Cathode 利用高结晶普鲁士蓝类似物阴极在模拟盐水中实现高容量和稳定的钠捕获
Small Structures Pub Date : 2024-06-10 DOI: 10.1002/sstr.202400163
Shiyong Wang, Yuhao Lei, Changping Li, Lin Zhao, Shuwen Du, Gang Wang, Jieshan Qiu
{"title":"Enabling High Capacity and Stable Sodium Capture in Simulated Saltwater by Highly Crystalline Prussian Blue Analogues Cathode","authors":"Shiyong Wang, Yuhao Lei, Changping Li, Lin Zhao, Shuwen Du, Gang Wang, Jieshan Qiu","doi":"10.1002/sstr.202400163","DOIUrl":"https://doi.org/10.1002/sstr.202400163","url":null,"abstract":"\u0000Prussian blue analogues (PBAs) are considered as promising cathode materials for capacitive deionization (CDI) technology due to their 3D open‐frame structure and tunable redox active sites. However, the inevitably high content of [Fe(CN)6] vacancies in the crystal structure results in a low salt adsorption capacity (SAC) and poor recycling performance. Herein, a high‐salt nano‐reaction system is established by mechanochemical ball milling, enabling the preparation of a variety of highly crystallized PBAs (metal hexacyanoferrate, MHCF‐B‐170, M = Ni, Co, or Cu) with low vacancies (0.05–0.06 per formula unit). The reduction of vacancies in the PBAs lattice not only strengthens the conductivity and promotes the rapid transfer of electrons, but also reduces the migration energy barrier and accelerates the fast and reversible diffusion of Na+ ions. The structural characterization method and theoretical simulation demonstrates the excellent reversibility and crystal structure stability of MHCF‐B‐170 during the CDI process. Impressively, the NiHCF‐B‐170 exhibits excellent CDI performance, characterized by an exceptionally high SAC of up to 101.4 mg g−1 at 1.2 V, and demonstrates remarkable cycle stability with no significant degradation observed even after 100 cycles. This PBAs with low Fe(CN)6 vacancies are expected to be a competitive candidate material for CDI electrodes.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141364387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controlled Self-Assembly of Vesicles by Electrospray Deposition 通过电喷雾沉积实现囊泡的可控自组装
Small Structures Pub Date : 2024-06-09 DOI: 10.1002/sstr.202470025
Toshihisa Osaki, Koki Kamiya, Ryuji Kawano, Kaori Kuribayashi-Shigetomi, Shoji Takeuchi
{"title":"Controlled Self-Assembly of Vesicles by Electrospray Deposition","authors":"Toshihisa Osaki, Koki Kamiya, Ryuji Kawano, Kaori Kuribayashi-Shigetomi, Shoji Takeuchi","doi":"10.1002/sstr.202470025","DOIUrl":"https://doi.org/10.1002/sstr.202470025","url":null,"abstract":"<b>Controlled Self-Assembly</b>","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141514428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated Copper Nanomaterials-Decorated Microsphere Photothermal Platform for Comprehensive Melanoma Treatment 用于黑色素瘤综合治疗的纳米铜材料装饰微球光热综合平台
Small Structures Pub Date : 2024-06-09 DOI: 10.1002/sstr.202470027
Xinyi Zhang, Mengya Zhang, Hengqing Cui, Tinglin Zhang, Zhuanzhuan Zhang, Jingzhu Li, Jingsheng Zhou, Xianghe Jiang, Chenchen Liu, Jie Gao
{"title":"Integrated Copper Nanomaterials-Decorated Microsphere Photothermal Platform for Comprehensive Melanoma Treatment","authors":"Xinyi Zhang, Mengya Zhang, Hengqing Cui, Tinglin Zhang, Zhuanzhuan Zhang, Jingzhu Li, Jingsheng Zhou, Xianghe Jiang, Chenchen Liu, Jie Gao","doi":"10.1002/sstr.202470027","DOIUrl":"https://doi.org/10.1002/sstr.202470027","url":null,"abstract":"<b>Melanoma Treatment</b>","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141552074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exceptional High-Performance Oxygen Transport Membrane and Comprehensive Study on Mass/Charge Transport Properties 卓越的高性能氧气传输膜和有关质量/电荷传输特性的综合研究
Small Structures Pub Date : 2024-06-03 DOI: 10.1002/sstr.202400095
Hohan Bae, Gyeong Duk Nam, Yeon Namgung, Kwangho Park, Jun-Young Park, José M. Serra, Jong Hoon Joo, Sun-Ju Song
{"title":"Exceptional High-Performance Oxygen Transport Membrane and Comprehensive Study on Mass/Charge Transport Properties","authors":"Hohan Bae, Gyeong Duk Nam, Yeon Namgung, Kwangho Park, Jun-Young Park, José M. Serra, Jong Hoon Joo, Sun-Ju Song","doi":"10.1002/sstr.202400095","DOIUrl":"https://doi.org/10.1002/sstr.202400095","url":null,"abstract":"This study focuses on mixed-conducting perovskite membranes for efficient oxygen supply, aiming to replace energy-intensive cryogenic distillation with a more practical alternative. A La and Nb co-doped BaCoO<sub>3−<i>δ</i></sub> perovskite is introduced, Ba<sub>0.95</sub>La<sub>0.05</sub>Co<sub>0.8</sub>Fe<sub>0.12</sub>Nb<sub>0.08</sub>O<sub>3−<i>δ</i></sub> (BLCFN) with a record-breaking oxygen permeation flux, surpassing all known single-phase perovskite membranes. To elucidate its superior membrane performance, the mass/charge transport properties and equilibrium bulk properties are investigated and quantitative indicators (<i>D</i><sub>O</sub> = 5.8 × 10<sup>−6</sup> cm<sup>2</sup> s<sup>−1</sup>, <i>k</i><sub>O</sub> = 1.0 × 10<sup>−4</sup> cm s<sup>−1</sup>, <i>σ</i><sub>ion</sub> = 0.93 S cm<sup>−1</sup> at 900 °C) reveal fast diffusion and excellent surface gas-exchange kinetics. The oxygen permeability of 12.4 mL cm<sup>−2</sup> min<sup>−1</sup> and over 200 h of long-term stability is achieved in an air/He atmosphere at 900 °C. By presenting a material that demonstrates higher performance than Ba<sub>0.5</sub>Sr<sub>0.5</sub>Co<sub>0.8</sub>Fe<sub>0.2</sub>O<sub>3−<i>δ</i></sub> (BSCF), currently known for its highest permeability, it is believed that this marks a significant step toward innovative performance enhancement of perovskite oxide-based membranes.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141257501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifold Fermions Boosted Hydrogen Evolution Reaction Catalysis in Cubic Palladium Bronze LaPd3S4 多倍费米子促进立方钯青铜 LaPd3S4 中的氢气进化反应催化作用
Small Structures Pub Date : 2024-06-03 DOI: 10.1002/sstr.202400175
Yang Li, Jialin Gong, Xiaotian Wang
{"title":"Multifold Fermions Boosted Hydrogen Evolution Reaction Catalysis in Cubic Palladium Bronze LaPd3S4","authors":"Yang Li, Jialin Gong, Xiaotian Wang","doi":"10.1002/sstr.202400175","DOIUrl":"https://doi.org/10.1002/sstr.202400175","url":null,"abstract":"Topological materials are currently considered excellent catalysts for heterogeneous processes because of their surface metallic states and excellent carrier mobility. This work will show that cubic palladium bronze LaPd<sub>3</sub>S<sub>4</sub> is an ideal topological material with multifold fermions, Fermi arcs on the (001) surface, and high catalytic performance for electrochemical hydrogen evolution reactions (HER). A direct correlation has been discovered between the position of the multifold fermions (related to the Fermi level) and Gibbs free energy (Δ<i>G</i><sub>H*</sub>). Moreover, by applying the vertical electric field and uniaxial strain to the LaPd<sub>3</sub>S<sub>4</sub>, the multifold fermions disappear, and the |Δ<i>G</i><sub>H*</sub>| increases, weakening the HER activity. This correlation establishes a clear connection between increased catalytic performance and topological states and fully elucidates the underlying process in topological catalysis.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141259823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D Superstructures Consisting of Intersecting Gold Lamellae Formed by a Micelle-Mediated Anisotropic Growth Approach 由微胶囊介导的各向异性生长方法形成的由相交的金薄片组成的三维超结构
Small Structures Pub Date : 2024-05-26 DOI: 10.1002/sstr.202400072
Jiaxin Rui, Meng Chen, Tingting Wu, Xuzhi Shi, Wei Lu, Meng Dang, Xiaolin Han, Ning Wang, Yuru Wang, Xiaodan Su, Zhaogang Teng
{"title":"3D Superstructures Consisting of Intersecting Gold Lamellae Formed by a Micelle-Mediated Anisotropic Growth Approach","authors":"Jiaxin Rui, Meng Chen, Tingting Wu, Xuzhi Shi, Wei Lu, Meng Dang, Xiaolin Han, Ning Wang, Yuru Wang, Xiaodan Su, Zhaogang Teng","doi":"10.1002/sstr.202400072","DOIUrl":"https://doi.org/10.1002/sstr.202400072","url":null,"abstract":"3D superstructures (3DSs) have attracted increasing interest because of the collective synergistic effects of individual building units, but their customization relies on tedious multistep strategy or high-end nanofabrication technology. Herein, for the first time, a facile block copolymer micelle-mediated anisotropic growth approach is reported to fabricate gold 3DSs consisting of tunable and intersecting lamellae with sawtooth-like edges. The preparation of the 3DSs depends on the mediation of reduction kinetics of gold precursors and adsorption of block copolymer micelles on gold crystal surfaces using disulfiram as ligands. The thickness of lamellae in the 3DSs is controllable from ≈21 to 102 nm by adjusting the weight fraction of the micellar hydrophobicity blocks and the composed lamellar number is regulated from ≈3 to ≈30. Additional morphologies, such as a dendritic mesoporous structure and meatball-like shapes, are obtained through controlling the extent of micelle swelling. Finite-difference time-domain simulations demonstrate that the unique 3DSs of gold lamellae with sawtooth-like edges form abundant hotspots giving rise to surface-enhanced Raman scattering (SERS). The 3DSs exhibit strong electromagnetic field enhancement and excellent performance as SERS substrates for detecting 4-mercaptobenzoic acid.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141173024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible, Photonic Films of Surfactant-Functionalized Cellulose Nanocrystals for Pressure and Humidity Sensing 用于压力和湿度传感的表面活性剂功能化纤维素纳米晶体柔性光子薄膜
Small Structures Pub Date : 2024-05-23 DOI: 10.1002/sstr.202400104
Diogo V. Saraiva, Steven N. Remiëns, Ethan I. L. Jull, Ivo R. Vermaire, Lisa Tran
{"title":"Flexible, Photonic Films of Surfactant-Functionalized Cellulose Nanocrystals for Pressure and Humidity Sensing","authors":"Diogo V. Saraiva, Steven N. Remiëns, Ethan I. L. Jull, Ivo R. Vermaire, Lisa Tran","doi":"10.1002/sstr.202400104","DOIUrl":"https://doi.org/10.1002/sstr.202400104","url":null,"abstract":"Most paints contain pigments that absorb light and fade over time. A robust alternative can be found in nature, where structural coloration arises from the interference of light with submicron features. Plant-derived, cellulose nanocrystals (CNCs) mimic these features by self-assembling into a cholesteric liquid crystal that exhibits structural coloration when dried. While much research has been done on CNCs in aqueous solutions, less is known about transferring CNCs to apolar solvents that are widely employed in paints. This study uses a common surfactant in agricultural and industrial products to suspend CNCs in toluene . Surprisingly, a stable liquid crystal phase is formed within hours, even with concentrations of up to 50 wt%. Evaporating the apolar CNC suspensions results in photonic films with peak wavelengths ranging from 660 to 920 nm. The resulting flexible films have variable mechanical properties with surfactant content, allowing for an optical response with applied force. The films also act as humidity sensors, with increasing relative humidity swelling the films, yielding a redshift in the reflected wavelength. With the addition of a single surfactant, CNCs can be made compatible with existing production methods of industrial coatings, while improving the strength and responsiveness of structurally colored films to external stimuli.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141172914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enabling Highly Efficient Neodymium Luminescence for Near‐Infrared Phosphor‐Converted Light‐Emitting Diode Applications 为近红外荧光粉转换发光二极管应用提供高效钕发光功能
Small Structures Pub Date : 2024-05-23 DOI: 10.1002/sstr.202400092
Kaina Wang, Jipeng Fu, Hongliang Dong, Bingyu Huang, Jinru Liu, Long Tian, Jing Feng, Chunzhen Yang, Chenjie Lou, Ligang Xu, Tianyi Sun, Huajie Luo, Shiqing Xu, Guowei Yin, Hongjie Zhang, Mingxue Tang
{"title":"Enabling Highly Efficient Neodymium Luminescence for Near‐Infrared Phosphor‐Converted Light‐Emitting Diode Applications","authors":"Kaina Wang, Jipeng Fu, Hongliang Dong, Bingyu Huang, Jinru Liu, Long Tian, Jing Feng, Chunzhen Yang, Chenjie Lou, Ligang Xu, Tianyi Sun, Huajie Luo, Shiqing Xu, Guowei Yin, Hongjie Zhang, Mingxue Tang","doi":"10.1002/sstr.202400092","DOIUrl":"https://doi.org/10.1002/sstr.202400092","url":null,"abstract":"Near‐infrared (NIR) phosphors have been widely used in biomedical applications based on their deep tissue penetration. However, the lack of blue‐pumped NIR phosphors with emission ranges beyond 1000 nm has greatly limited the development of NIR phosphor‐converted light‐emitting diodes (pc‐LEDs). Herein, a facile way to boost the luminescence efficiency and thermal stability by introducing the promoters of Ce3+ and Na+ into Nd3+‐doped SrS NIR phosphor is demonstrated, thus achieving light emitting at 850–1500 nm with a peak wavelength of ≈1070 nm. Through sensitization by the allowed 4f → 5d transition of Ce3+, the SrS: Nd3+ phosphors are excitable by using a commercial blue LED, attributing to the effective energy transfer between Nd3+ and Ce3+. Besides, the structural analysis and density functional theory calculations reveal the lattice distortion mechanism and geometry of doping ions contributed to the weakened thermal quenching effect and the increasing of internal quantum efficiency. The optimized NIR phosphor luminescence intensity remains at 91.8% of the initial intensity at 393 K, and the internal quantum efficiency increases to 42.8% from 31.7% of the sample without Na+ doping. The present exploration of Nd3+‐doped NIR phosphors will provide a reference for designing NIR pc‐LEDs with enhanced properties.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141104932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of Porous Connected Cryoaerogel Networks from Cadmium Chalcogenide Nanoplatelet Stacks 利用钙化镓纳米颗粒堆合成多孔连接的冷凝胶网络
Small Structures Pub Date : 2024-05-23 DOI: 10.1002/sstr.202300554
R. Graf, D. Pluta, Adrian Hannebauer, Jakob Schlenkrich, N. Bigall
{"title":"Synthesis of Porous Connected Cryoaerogel Networks from Cadmium Chalcogenide Nanoplatelet Stacks","authors":"R. Graf, D. Pluta, Adrian Hannebauer, Jakob Schlenkrich, N. Bigall","doi":"10.1002/sstr.202300554","DOIUrl":"https://doi.org/10.1002/sstr.202300554","url":null,"abstract":"Cadmium chalcogenide nanoplatelets (NPLs) are not only known due to their unique optical properties but also because of their ability to self‐assemble into stacks with new collective properties. Only recently, a stacking process in an aqueous medium has been demonstrated, which opens up possible applications and methods such as gelation. Nanoparticle‐based aerogels gain a lot of attention due to their high relative surface areas and porosity and thus, high potential for catalytic applications. Herein, the positive properties of aerogels to the NPL‐stack system by cryoaerogelation of destabilized NPL dispersions are introduced. After the addition of an antisolvent to initiate the stacking, the dispersion is flash‐frozen with liquid nitrogen and freeze‐dried. By this method, porous cryoaerogel networks result in high surface areas and retained stacking of the NPLs. The formed stack‐gels are investigated by electron microscopy and physisorption measurements. Optical and photoelectrochemical measurements verify the charge carrier transport within the stack‐gel network.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141102961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exceptionally Stable Cobalt Nanoclusters on Functionalized Graphene 功能化石墨烯上异常稳定的钴纳米团簇
Small Structures Pub Date : 2024-05-23 DOI: 10.1002/sstr.202400055
V. Chesnyak, Srdjan Stavrić, M. Panighel, Daniele Povoledo, S. del Puppo, M. Peressi, Giovanni Comelli, C. Africh
{"title":"Exceptionally Stable Cobalt Nanoclusters on Functionalized Graphene","authors":"V. Chesnyak, Srdjan Stavrić, M. Panighel, Daniele Povoledo, S. del Puppo, M. Peressi, Giovanni Comelli, C. Africh","doi":"10.1002/sstr.202400055","DOIUrl":"https://doi.org/10.1002/sstr.202400055","url":null,"abstract":"\u0000To improve reactivity and achieve a higher material efficiency, catalysts are often used in the form of clusters with nanometer dimensions, down to single atoms. Since the corresponding properties are highly structure‐dependent, a suitable support is thus required to ensure cluster stability during operating conditions. Herein, an efficient method to stabilize cobalt nanoclusters on graphene grown on nickel substrates, exploiting the anchoring effect of nickel atoms incorporated in the carbon network is presented. The anchored nanoclusters are studied by in situ variable temperature scanning tunneling microscopy at different temperatures and upon gas exposure. Cluster stability upon annealing up to 200 °C and upon CO exposure at least up to 1 × 10−6 mbar CO partial pressure is demonstrated. Moreover, the dimensions of the cobalt nanoclusters remain surprisingly small (<3 nm diameter) with a narrow size distribution. Density functional theory calculations demonstrate that the interplay between the low diffusion barrier on graphene on nickel and the strong anchoring effect of the nickel atoms leads to the increased stability and size selectivity of these clusters. This anchoring technique is expected to be applicable also to other cases, with clear advantages for transition metals that are usually difficult to stabilize.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141105939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信