Elucidating Supercrystal Mechanics and Nanoparticle Size and Shape Effects under High Pressure

Claire Hotton, Daniel García-Lojo, Evgeny Modin, Rahul Nag, Sergio Gómez-Graña, Jules Marcone, Jaime Gabriel Trazo, Jennifer Bodin, Claire Goldmann, Thomas Bizien, Isabel Pastoriza-Santos, Brigitte Pansu, Jorge Pérez-Juste, Victor Balédent, Cyrille Hamon
{"title":"Elucidating Supercrystal Mechanics and Nanoparticle Size and Shape Effects under High Pressure","authors":"Claire Hotton, Daniel García-Lojo, Evgeny Modin, Rahul Nag, Sergio Gómez-Graña, Jules Marcone, Jaime Gabriel Trazo, Jennifer Bodin, Claire Goldmann, Thomas Bizien, Isabel Pastoriza-Santos, Brigitte Pansu, Jorge Pérez-Juste, Victor Balédent, Cyrille Hamon","doi":"10.1002/sstr.202400303","DOIUrl":null,"url":null,"abstract":"Supercrystals, extended lattices of closely packed nanoparticles (NPs), present exciting possibilities for various applications. Under high pressures, typically in the gigapascal (GPa) range, supercrystals undergo significant structural changes, including adjustable interparticle distances, phase transformations, and the formation of new nanostructures through coalescence. While prior research has focused on ligand engineering's impact on supercrystal mechanical response, the influence of NP shape remains unexplored, especially for NPs larger than 10 nm coated with hydrosoluble ligands. This study examines the effects of NP shape on the mechanical properties of supercrystals using high-pressure small-angle X-ray scattering and focused ion beam–scanning electron microscopy tomography. Notably, supercrystals exhibit higher hardness levels compared to previously reported values for gold supercrystals, attributed to the use of larger NPs. Spherical and tetrahedral NPs rearrange before collapsing under pressure, whereas rods and octahedra coalesce without prior structural rearrangement, likely due to their higher packing fraction. Additionally, anisotropic deformation of NP lattices and sintering does not always correlate with deviatoric stresses. These findings refine the understanding of complex processes governing supercrystal structure under high pressure, opening new avenues for NP engineering and advancing plasmonic applications under extreme conditions.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"190 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sstr.202400303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Supercrystals, extended lattices of closely packed nanoparticles (NPs), present exciting possibilities for various applications. Under high pressures, typically in the gigapascal (GPa) range, supercrystals undergo significant structural changes, including adjustable interparticle distances, phase transformations, and the formation of new nanostructures through coalescence. While prior research has focused on ligand engineering's impact on supercrystal mechanical response, the influence of NP shape remains unexplored, especially for NPs larger than 10 nm coated with hydrosoluble ligands. This study examines the effects of NP shape on the mechanical properties of supercrystals using high-pressure small-angle X-ray scattering and focused ion beam–scanning electron microscopy tomography. Notably, supercrystals exhibit higher hardness levels compared to previously reported values for gold supercrystals, attributed to the use of larger NPs. Spherical and tetrahedral NPs rearrange before collapsing under pressure, whereas rods and octahedra coalesce without prior structural rearrangement, likely due to their higher packing fraction. Additionally, anisotropic deformation of NP lattices and sintering does not always correlate with deviatoric stresses. These findings refine the understanding of complex processes governing supercrystal structure under high pressure, opening new avenues for NP engineering and advancing plasmonic applications under extreme conditions.

Abstract Image

阐明高压下的超晶力学及纳米粒子尺寸和形状效应
超级晶体是紧密排列的纳米粒子(NPs)的扩展晶格,为各种应用提供了令人兴奋的可能性。在高压(通常在千兆帕(GPa)范围内)条件下,超级晶体会发生显著的结构变化,包括粒子间距离可调、相变以及通过凝聚形成新的纳米结构。之前的研究主要关注配体工程对超晶机械响应的影响,但对 NP 形状的影响仍未进行探讨,尤其是对包覆有水溶性配体的大于 10 纳米的 NP。本研究利用高压小角 X 射线散射和聚焦离子束扫描电子显微断层扫描技术研究了 NP 形状对超级晶体机械性能的影响。值得注意的是,与之前报道的金超级晶体的硬度值相比,超级晶体表现出更高的硬度水平,这归因于使用了较大的 NPs。球形和四面体 NPs 在压力下塌缩前会重新排列,而棒状和八面体在凝聚前不会发生结构重新排列,这可能是由于它们的堆积分数较高。此外,NP 晶格的各向异性变形和烧结并不总是与偏差应力相关。这些发现加深了人们对高压下超级晶体结构复杂过程的理解,为 NP 工程开辟了新途径,并推动了极端条件下的质子应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信