Liu Yang, Junchao Wang, Tingting Liu, Hanze He, Xinyu Li, Xinglai Zhang, Jing Li, Song Li, Baodan Liu
{"title":"Synergistic Catalysis of Rh Single-Atom and Clusters Supported on TiO2 Nanosheet Array for Highly Efficient Removal of CO and NOx","authors":"Liu Yang, Junchao Wang, Tingting Liu, Hanze He, Xinyu Li, Xinglai Zhang, Jing Li, Song Li, Baodan Liu","doi":"10.1002/sstr.202400230","DOIUrl":null,"url":null,"abstract":"Developing an efficient catalyst is the key to selective catalytic reduction (SCR) of NO<sub><i>x</i></sub> by CO (CO-SCR) to simultaneously address the pollution of toxic NO<sub><i>x</i></sub> and CO. Herein, a novel Rh/TiO<sub>2</sub>/Ti monolithic catalyst is designed and synthesized, featuring Rh species in the form of single atoms (Rh<sub>1</sub>) and clusters (Rh<sub><i>n</i></sub>). This catalyst overcomes the inhibitory effects of oxygen, achieving low-temperature NO conversion. The investigation substantively contributes insights into the strategic manipulation of active metal components, emphasizing the potential of single-atom/cluster catalysts to enhance efficiency. The Rh/TiO<sub>2</sub>/Ti catalyst has demonstrated exceptional catalytic efficacy, achieving 100% NO conversion at a low temperature of 190 °C in the presence of oxygen. Additionally, it exhibits remarkable stability and water resistance for practical applications. Moreover, comprehensive characterization confirms that Rh clusters and single-atom sites play an important role in the selective adsorption of NO and CO molecules, promoting the formation of –N<sub>2</sub>O species and ultimately resulting in the complete conversion of NO and CO to N<sub>2</sub> and CO<sub>2</sub>. This study not only provides valuable guidance for designing high-performance CO-SCR catalysts but also underscores the potential of single atoms/clusters catalytic systems in both fundamental research and industrial catalysis.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sstr.202400230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Developing an efficient catalyst is the key to selective catalytic reduction (SCR) of NOx by CO (CO-SCR) to simultaneously address the pollution of toxic NOx and CO. Herein, a novel Rh/TiO2/Ti monolithic catalyst is designed and synthesized, featuring Rh species in the form of single atoms (Rh1) and clusters (Rhn). This catalyst overcomes the inhibitory effects of oxygen, achieving low-temperature NO conversion. The investigation substantively contributes insights into the strategic manipulation of active metal components, emphasizing the potential of single-atom/cluster catalysts to enhance efficiency. The Rh/TiO2/Ti catalyst has demonstrated exceptional catalytic efficacy, achieving 100% NO conversion at a low temperature of 190 °C in the presence of oxygen. Additionally, it exhibits remarkable stability and water resistance for practical applications. Moreover, comprehensive characterization confirms that Rh clusters and single-atom sites play an important role in the selective adsorption of NO and CO molecules, promoting the formation of –N2O species and ultimately resulting in the complete conversion of NO and CO to N2 and CO2. This study not only provides valuable guidance for designing high-performance CO-SCR catalysts but also underscores the potential of single atoms/clusters catalytic systems in both fundamental research and industrial catalysis.
开发高效催化剂是一氧化碳选择性催化还原氮氧化物(SCR)的关键,可同时解决有毒氮氧化物和一氧化碳的污染问题。本文设计并合成了一种新型 Rh/TiO2/Ti 整体催化剂,其特点是以单个原子(Rh1)和团簇(Rhn)形式存在的 Rh 物种。这种催化剂克服了氧气的抑制作用,实现了氮氧化物的低温转化。这项研究为活性金属成分的战略操作提供了重要见解,强调了单原子/团簇催化剂提高效率的潜力。Rh/TiO2/Ti 催化剂表现出卓越的催化效率,在有氧气存在的 190 °C 低温条件下实现了 100% 的氮氧化物转化。此外,该催化剂还表现出卓越的稳定性和耐水性,适合实际应用。此外,综合表征证实,Rh 团簇和单原子位点在选择性吸附 NO 和 CO 分子、促进 -N2O 物种的形成以及最终将 NO 和 CO 完全转化为 N2 和 CO2 方面发挥了重要作用。这项研究不仅为设计高性能 CO-SCR 催化剂提供了有价值的指导,而且凸显了单原子/簇催化系统在基础研究和工业催化方面的潜力。