Rice最新文献

筛选
英文 中文
Physiological Basis of Plant Growth Promotion in Rice by Rhizosphere and Endosphere Associated Streptomyces Isolates from India 印度根瘤菌和内圈链霉菌对水稻植物生长促进作用的生理基础
IF 5.5 1区 农林科学
Rice Pub Date : 2024-09-11 DOI: 10.1186/s12284-024-00732-w
Dhivya P. Thenappan, Rakesh Pandey, Alkesh Hada, Dinesh Kumar Jaiswal, Viswanathan Chinnusamy, Ramcharan Bhattacharya, Kannepalli Annapurna
{"title":"Physiological Basis of Plant Growth Promotion in Rice by Rhizosphere and Endosphere Associated Streptomyces Isolates from India","authors":"Dhivya P. Thenappan, Rakesh Pandey, Alkesh Hada, Dinesh Kumar Jaiswal, Viswanathan Chinnusamy, Ramcharan Bhattacharya, Kannepalli Annapurna","doi":"10.1186/s12284-024-00732-w","DOIUrl":"https://doi.org/10.1186/s12284-024-00732-w","url":null,"abstract":"<p>This study demonstrated the plant growth-promoting capabilities of native actinobacterial strains obtained from different regions of the rice plant, including the rhizosphere (FT1, FTSA2, FB2, and FH7) and endosphere (EB6). We delved into the molecular mechanisms underlying the beneficial effects of these plant-microbe interactions by conducting a transcriptional analysis of a select group of key genes involved in phytohormone pathways. Through in vitro screening for various plant growth-promoting (PGP) traits, all tested isolates exhibited positive traits for indole-3-acetic acid synthesis and siderophore production, with FT1 being the sole producer of hydrogen cyanide (HCN). All isolates were identified as members of the <i>Streptomyces</i> genus through 16S rRNA amplification. In pot culture experiments, rice seeds inoculated with strains FB2 and FTSA2 exhibited significant increases in shoot dry mass by 7% and 34%, respectively, and total biomass by 8% and 30%, respectively. All strains led to increased leaf nitrogen levels, with FTSA2 demonstrating the highest increase (4.3%). On the contrary, strains FB2 and FT1 increased root length, root weight ratio, root volume, and root surface area, leading to higher root nitrogen content. All isolates, except for FB2, enhanced total chlorophyll and carotenoid levels. Additionally, qRT-PCR analysis supported these findings, revealing differential gene expression in auxin (<i>OsAUX1</i>,<i> OsIAA1</i>,<i> OsYUCCA1</i>,<i> OsYUCCA3</i>), gibberellin (<i>OsGID1</i>,<i> OsGA20ox-1</i>), and cytokinin (<i>OsIPT3</i>,<i> OsIPT5</i>) pathways in response to specific actinobacterial treatments. These actinobacterial strains, which enhance both aboveground and belowground crop characteristics, warrant further evaluation in field trials, either as individual strains or in consortia. This could lead to the development of commercial bioinoculants for use in integrated nutrient management practices.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"58 1","pages":"60"},"PeriodicalIF":5.5,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gγ-protein GS3 Function in Tight Genetic Relation with OsmiR396/GS2 to Regulate Grain Size in Rice. Gγ蛋白 GS3 与 OsmiR396/GS2 在调控水稻籽粒大小方面的紧密遗传关系
IF 4.8 1区 农林科学
Rice Pub Date : 2024-09-09 DOI: 10.1186/s12284-024-00736-6
Lin Zhu, Yanjie Shen, Zhengyan Dai, Xuexia Miao, Zhenying Shi
{"title":"Gγ-protein GS3 Function in Tight Genetic Relation with OsmiR396/GS2 to Regulate Grain Size in Rice.","authors":"Lin Zhu, Yanjie Shen, Zhengyan Dai, Xuexia Miao, Zhenying Shi","doi":"10.1186/s12284-024-00736-6","DOIUrl":"10.1186/s12284-024-00736-6","url":null,"abstract":"<p><p>Manipulating grain size demonstrates great potential for yield promotion in cereals since it is tightly associated with grain weight. Several pathways modulating grain size have been elaborated in rice, but possible crosstalk between the ingredients is rarely studied. OsmiR396 negatively regulates grain size through targeting OsGRF4 (GS2) and OsGRF8, and proves to be multi-functioning. Here we showed that expression of GS3 gene, a Gγ-protein encoding gene, that negatively regulates grain size, was greatly down-regulated in the young embryos of MIM396, GRF8OE and GS2OE plants, indicating possible regulation of GS3 gene by OsmiR396/GRF module. Meanwhile, multiple biochemical assays proved possible transcriptional regulation of OsGRF4 and OsGRF8 proteins on GS3 gene. Further genetic relation analysis revealed tight genetic association between not only OsmiR396 and GS3 gene, but also GS2 and GS3 gene. Moreover, we revealed possible regulation of GS2 on four other grain size-regulating G protein encoding genes. Thus, the OsmiR396 pathway and the G protein pathway cross talks to regulate grain size. Therefore, we established a bridge linking the miRNA-transcription factors pathway and the G-protein signaling pathway that regulates grain size in rice.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"17 1","pages":"59"},"PeriodicalIF":4.8,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11384671/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: HD-ZIP IV Gene ROC1 Regulates Leaf Rolling and Drought Response Through Formation of Heterodimers with ROC5 and ROC8 in Rice. 更正:HD-ZIP IV 基因 ROC1 通过与 ROC5 和 ROC8 形成异源二聚体调控水稻的叶片卷曲和干旱响应。
IF 4.8 1区 农林科学
Rice Pub Date : 2024-09-09 DOI: 10.1186/s12284-024-00738-4
Zhihuan Tao, Xuexia Miao, Zhenying Shi
{"title":"Correction: HD-ZIP IV Gene ROC1 Regulates Leaf Rolling and Drought Response Through Formation of Heterodimers with ROC5 and ROC8 in Rice.","authors":"Zhihuan Tao, Xuexia Miao, Zhenying Shi","doi":"10.1186/s12284-024-00738-4","DOIUrl":"10.1186/s12284-024-00738-4","url":null,"abstract":"","PeriodicalId":21408,"journal":{"name":"Rice","volume":"17 1","pages":"58"},"PeriodicalIF":4.8,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11383883/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
OsRopGEF10 Attenuates Cytokinin Signaling to Regulate Panicle Development and Grain Yield in Rice. OsRopGEF10 可抑制细胞分裂素信号传导,从而调控水稻圆锥花序的发育和谷物产量。
IF 4.8 1区 农林科学
Rice Pub Date : 2024-09-03 DOI: 10.1186/s12284-024-00737-5
Ming Li, Lianjie Feng, Huanxia Ye, Meiyu Li, Jing Jin, Li-Zhen Tao, Huili Liu
{"title":"OsRopGEF10 Attenuates Cytokinin Signaling to Regulate Panicle Development and Grain Yield in Rice.","authors":"Ming Li, Lianjie Feng, Huanxia Ye, Meiyu Li, Jing Jin, Li-Zhen Tao, Huili Liu","doi":"10.1186/s12284-024-00737-5","DOIUrl":"10.1186/s12284-024-00737-5","url":null,"abstract":"<p><p>Cytokinins, which play crucial roles in shoot development, substantially affect grain yield. In rice, the OsRopGEF10-OsRAC3 module is associated with cytokinin signaling and crown root development. However, the effects of RopGEF-mediated cytokinin signaling on rice shoot development and grain yield remain unclear. In this study, we investigated the role of OsRopGEF10 in SAM development and the underlying mechanism. We showed that overexpression of OsRopGEF10 inhibited SAM and panicle development, leading to decreased grain yield. Intriguingly, the overexpression of a specific amino acid mutant of OsRopGEF10, designated gef10-W260S, was found to promote panicle development and grain yield. Further analysis using the BiFC assay revealed that the gef10-W260S mutation disrupted the recruitment of rice histidine phosphotransfer proteins (OsAHP1/2) to the plasma membrane (PM), thereby promoting cytokinin signaling. This effect was corroborated by a dark-induced leaf senescence assay, which revealed an increased cytokinin response in the gef10-W260S ectopic expression lines, whereas the overexpression lines presented a suppressed cytokinin response. Moreover, we revealed that the enhanced panicle development in the gef10-W260S lines was attributable to the upregulated expression of several type-B response regulators (RRs) that are crucial for panicle development. Collectively, these findings revealed the negative regulatory function of OsRopGEF10 in the development of the shoot apical meristem (SAM) via interference with cytokinin signaling. Our study highlights the promising role of OsRopGEF10 as a potential target for regulating SAM and panicle development in rice, revealing a valuable breeding strategy for increasing crop yield.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"17 1","pages":"57"},"PeriodicalIF":4.8,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369127/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
OsRAV1 Regulates Seed Vigor and Salt Tolerance During Germination in Rice. OsRAV1 在水稻发芽过程中调控种子活力和耐盐性
IF 4.8 1区 农林科学
Rice Pub Date : 2024-09-02 DOI: 10.1186/s12284-024-00734-8
Yingbo Gao, Xinyi Zhao, Xin Liu, Chang Liu, Kunming Zhang, Xiaoxiang Zhang, Juan Zhou, Guichun Dong, Youping Wang, Jianye Huang, Zefeng Yang, Yong Zhou, Youli Yao
{"title":"OsRAV1 Regulates Seed Vigor and Salt Tolerance During Germination in Rice.","authors":"Yingbo Gao, Xinyi Zhao, Xin Liu, Chang Liu, Kunming Zhang, Xiaoxiang Zhang, Juan Zhou, Guichun Dong, Youping Wang, Jianye Huang, Zefeng Yang, Yong Zhou, Youli Yao","doi":"10.1186/s12284-024-00734-8","DOIUrl":"10.1186/s12284-024-00734-8","url":null,"abstract":"<p><p>Seed vigor is a complex trait encompassing seed germination, seedling emergence, growth, seed longevity, and stress tolerance, all are crucial for direct seeding in rice. Here, we report that the AP2/ERF transcription factor OsRAV1 (RELATED TO ABI3 AND VP1) positively regulates seed germination, vigor, and salt tolerance. Additionally, OsRAV1 was differently expressed in embryo and endosperm, with the OsRAV1 localized in the nucleus. Transcriptomic analysis revealed that OsRAV1 modulates seed vigor through plant hormone signal transduction and phenylpropanoid biosynthesis during germination. Haplotype analysis showed that rice varieties carrying Hap3 displayed enhanced salt tolerance during seed germination. These findings suggest that OsRAV1 is a potential target in breeding rice varieties with high seed vigor suitable for direct seeding cultivation.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"17 1","pages":"56"},"PeriodicalIF":4.8,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366736/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142111520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rice Promoter Editing: An Efficient Genetic Improvement Strategy. 水稻启动子编辑:一种高效的基因改良策略。
IF 4.8 1区 农林科学
Rice Pub Date : 2024-08-30 DOI: 10.1186/s12284-024-00735-7
Bowen Wu, Hangfei Luo, Zhongbo Chen, Bakht Amin, Manyu Yang, Zhenghan Li, Shuai Wu, Saleh H Salmen, Sulaiman Ali Alharbi, Zhongming Fang
{"title":"Rice Promoter Editing: An Efficient Genetic Improvement Strategy.","authors":"Bowen Wu, Hangfei Luo, Zhongbo Chen, Bakht Amin, Manyu Yang, Zhenghan Li, Shuai Wu, Saleh H Salmen, Sulaiman Ali Alharbi, Zhongming Fang","doi":"10.1186/s12284-024-00735-7","DOIUrl":"https://doi.org/10.1186/s12284-024-00735-7","url":null,"abstract":"<p><p>Gene expression levels in rice (Oryza sativa L.) and other plant species are determined by the promoters, which directly control phenotypic characteristics. As essential components of genes, promoters regulate the intensity, location, and timing of gene expression. They contain numerous regulatory elements and serve as binding sites for proteins that modulate transcription, including transcription factors and RNA polymerases. Genome editing can alter promoter sequences, thereby precisely modifying the expression patterns of specific genes, and ultimately affecting the morphology, quality, and resistance of rice. This paper summarizes research on rice promoter editing conducted in recent years, focusing on improvements in yield, heading date, quality, and disease resistance. It is expected to inform the application of promoter editing and encourage further research and development in crop genetic improvement with promote.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"17 1","pages":"55"},"PeriodicalIF":4.8,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364747/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142111522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
OsSNDP4, a Sec14-nodulin Domain Protein, is Required for Pollen Development in Rice. OsSNDP4是一种Sec14-nodulin结构域蛋白,是水稻花粉发育所必需的。
IF 4.8 1区 农林科学
Rice Pub Date : 2024-08-29 DOI: 10.1186/s12284-024-00730-y
Weitao Xu, Xiaoqun Peng, Yiqi Li, Xinhuang Zeng, Wei Yan, Changjian Wang, Cheng Rui Wang, Shunquan Chen, Chunjue Xu, Xiaoyan Tang
{"title":"OsSNDP4, a Sec14-nodulin Domain Protein, is Required for Pollen Development in Rice.","authors":"Weitao Xu, Xiaoqun Peng, Yiqi Li, Xinhuang Zeng, Wei Yan, Changjian Wang, Cheng Rui Wang, Shunquan Chen, Chunjue Xu, Xiaoyan Tang","doi":"10.1186/s12284-024-00730-y","DOIUrl":"10.1186/s12284-024-00730-y","url":null,"abstract":"<p><p>Pollen is encased in a robust wall that shields the male gametophyte from various stresses and aids in pollination. The pollen wall consists of gametophyte-derived intine and sporophyte-derived exine. The exine is mainly composed of sporopollenin, which is biopolymers of aliphatic lipids and phenolics. The process of exine formation has been the subject of extensive research, yet the underlying molecular mechanisms remain elusive. In this study, we identified a rice mutant of the OsSNDP4 gene that is impaired in pollen development. We demonstrated that OsSNDP4, a putative Sec14-nodulin domain protein, exhibits a preference for binding to phosphatidylinositol (3)-phosphate [PI(3)P], a lipid primarily found in endosomal and vacuolar membranes. The OsSNDP4 protein was detected in association with the endoplasmic reticulum (ER), vacuolar membranes, and the nucleus. OsSNDP4 expression was detected in all tested organs but was notably higher in anthers during exine development. Loss of OsSNDP4 function led to abnormal vacuole dynamics, inhibition in Ubisch body development, and premature degradation of cellular contents and organelles in the tapetal cells. Microspores from the ossndp4 mutant plant displayed abnormal exine formation, abnormal vacuole enlargement, and ultimately, pollen abortion. RNA-seq assay revealed that genes involved in the biosynthesis of fatty acid and secondary metabolites, the biosynthesis of lipid polymers, and exosome formation were enriched among the down-regulated genes in the mutant anthers, which correlated with the morphological defects observed in the mutant anthers. Base on these findings, we propose that OsSNDP4 regulates pollen development by binding to PI(3)P and influencing the dynamics of membrane systems. The involvement of membrane systems in the regulation of sporopollenin biosynthesis, Ubisch body formation, and exine formation provides a novel mechanism regulating pollen wall development.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"17 1","pages":"54"},"PeriodicalIF":4.8,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362464/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142111521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linkage Mapping and Discovery of Candidate Genes for Drought Tolerance in Rice During the Vegetative Growth Period. 水稻无性生长期抗旱候选基因的连锁图谱绘制与发现
IF 4.8 1区 农林科学
Rice Pub Date : 2024-08-29 DOI: 10.1186/s12284-024-00733-9
Aixia Jiao, Li Chen, Xiaoding Ma, Jing Ma, Di Cui, Bing Han, Jianchang Sun, Longzhi Han
{"title":"Linkage Mapping and Discovery of Candidate Genes for Drought Tolerance in Rice During the Vegetative Growth Period.","authors":"Aixia Jiao, Li Chen, Xiaoding Ma, Jing Ma, Di Cui, Bing Han, Jianchang Sun, Longzhi Han","doi":"10.1186/s12284-024-00733-9","DOIUrl":"10.1186/s12284-024-00733-9","url":null,"abstract":"<p><p>Drought is a major abiotic stress affecting crop yields. Mapping quantitative trait loci (QTLs) and mining genes for drought tolerance in rice are important for identifying gene functions and targets for molecular breeding. Here, we performed linkage analysis of drought tolerance using a recombinant inbred line population derived from Jileng 1 (drought sensitive) and Milyang 23 (drought tolerant). An ultra-high-density genetic map, previously constructed by our research team using genotype data from whole-genome sequencing, was used in combination with phenotypic data for rice grown under drought stress conditions in the field in 2017-2019. Thirty-nine QTLs related to leaf rolling index and leaf withering degree were identified, and QTLs were found on all chromosomes except chromosomes 6, 10, and 11. qLWD4-1 was detected after 32 days and 46 days of drought stress in 2017 and explained 7.07-8.19% of the phenotypic variation. Two loci, qLRI2-2 and qLWD4-2, were identified after 29, 42, and 57 days of drought stress in 2018. These loci explained 10.59-17.04% and 5.14-5.71% of the phenotypic variation, respectively. There were 281 genes within the QTL interval. Through gene functional annotation and expression analysis, two candidate genes, Os04g0574600 and OsCHR731, were found. Quantitative reverse transcription PCR analysis showed that the expression levels of these genes were significantly higher under drought stress than under normal conditions, indicating positive regulation. Notably, Os04g0574600 was a newly discovered drought tolerance gene. Haplotype analysis showed that the RIL population carried two haplotypes (Hap1 and Hap2) of both genes. Lines carrying Hap2 exhibited significantly or extremely stronger drought tolerance than those carrying Hap1, indicating that Hap2 is an excellent haplotype. Among rice germplasm resources, there were two and three haplotypes of Os04g0574600 and OsCHR731, respectively. A high proportion of local rice resources in Sichuan, Yunnan, Anhui, Guangdong and Fujian provinces had Hap of both genes. In wild rice, 50% of accessions contained Hap1 of Os04g0574600 and 50% carried Hap4; 13.51%, 59.46% and 27.03% of wild rice accessions contained Hap1, Hap2, and Hap3, respectively. Hap2 of Os04g0574600 was found in more indica rice resources than in japonica rice. Therefore, Hap2 has more potential for utilization in future drought tolerance breeding of japonica rice.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"17 1","pages":"53"},"PeriodicalIF":4.8,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358570/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142093723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NADP-malic Enzyme OsNADP-ME2 Modulates Plant Height Involving in Gibberellin Signaling in Rice. NADP-苹果酸酶 OsNADP-ME2 参与赤霉素信号转导调节水稻植株高度
IF 4.8 1区 农林科学
Rice Pub Date : 2024-08-17 DOI: 10.1186/s12284-024-00729-5
Bing Li, Xiaolong Zhou, Wei Yao, Jinjun Lin, Xiaowen Ding, Qianru Chen, Hao Huang, Wenfeng Chen, Xilai Huang, Sujun Pan, Yinghui Xiao, Jianfeng Liu, Xionglun Liu, Jinling Liu
{"title":"NADP-malic Enzyme OsNADP-ME2 Modulates Plant Height Involving in Gibberellin Signaling in Rice.","authors":"Bing Li, Xiaolong Zhou, Wei Yao, Jinjun Lin, Xiaowen Ding, Qianru Chen, Hao Huang, Wenfeng Chen, Xilai Huang, Sujun Pan, Yinghui Xiao, Jianfeng Liu, Xionglun Liu, Jinling Liu","doi":"10.1186/s12284-024-00729-5","DOIUrl":"10.1186/s12284-024-00729-5","url":null,"abstract":"<p><p>Plants NADP-malic enzymes (NADP-MEs) act as a class of oxidative decarboxylase to mediate malic acid metabolism in organisms. Despite NADP-MEs have been demonstrated to play pivotal roles in regulating diverse biological processes, the role of NADP-MEs involving in plant growth and development remains rarely known. Here, we characterized the function of rice cytosolic OsNADP-ME2 in regulating plant height. The results showed that RNAi silencing and knock-out of OsNADP-ME2 in rice results in a dwarf plant structure, associating with significant expression inhibition of genes involving in phytohormone Gibberellin (GA) biosynthesis and signaling transduction, but with up-regulation for the expression of GA signaling suppressor SLR1. The accumulation of major bioactive GA<sub>1</sub>, GA<sub>4</sub> and GA<sub>7</sub> are evidently altered in RNAi lines, and exogenous GA treatment compromises the dwarf phenotype of OsNADP-ME2 RNAi lines. RNAi silencing of OsNADP-ME2 also causes the reduction of NADP-ME activity associating with decreased production of pyruvate. Thus, our data revealed a novel function of plant NADP-MEs in modulation of rice plant height through regulating bioactive GAs accumulation and GA signaling, and provided a valuable gene resource for rice plant architecture improvement.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"17 1","pages":"52"},"PeriodicalIF":4.8,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329442/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141996355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Proteomic Analysis Provides New Insights into Improved Grain-filling in Ratoon Season Rice. 比较蛋白质组分析为提高旱稻籽粒饱满度提供新见解
IF 4.8 1区 农林科学
Rice Pub Date : 2024-08-13 DOI: 10.1186/s12284-024-00727-7
Yuhang Zeng, Hongjuan Zi, Zhaocheng Wang, Xiumei Min, Mengying Chen, Bianhong Zhang, Zhong Li, Wenxiong Lin, Zhixing Zhang
{"title":"Comparative Proteomic Analysis Provides New Insights into Improved Grain-filling in Ratoon Season Rice.","authors":"Yuhang Zeng, Hongjuan Zi, Zhaocheng Wang, Xiumei Min, Mengying Chen, Bianhong Zhang, Zhong Li, Wenxiong Lin, Zhixing Zhang","doi":"10.1186/s12284-024-00727-7","DOIUrl":"10.1186/s12284-024-00727-7","url":null,"abstract":"<p><p>Grain-filling of rice spikelets (particularly for the later flowering inferior spikelets) is an important characteristic that affects both quality and yield. Rice ratooning technology is used to cultivate a second crop from dormant buds that sprout from stubble left after the first harvest. This study used two rice varieties, the conventional indica rice 'Jinhui 809' and the hybrid indica-japonica rice 'Yongyou 1540', to assess the impact of rice ratooning on grain-filling. The results indicated that the grain-filling process in inferior spikelets of ratoon season rice (ISR) showed significant improvement compared to inferior spikelets of main crop (late season) rice (ISL). This improvement was evident in the earlier onset of rapid grain-filling, higher seed-setting percentage, and improved grain quality. A label-free quantitative proteomic analysis using mass spectrometry identified 1724 proteins with significant abundance changes, shedding light on the molecular mechanisms behind the improved grain-filling in ISR. The functional analysis of these proteins indicated that ratooning stimulated the metabolic processes of sucrose-starch, trehalose, and hormones in rice inferior spikelets, leading to enhanced enzyme activities related to starch synthesis, elevated concentrations of trehalose-6-phosphate (T6P), indole-3-acetic acid (IAA) and zeatin riboside (ZR) during the active grain-filling phase. This research highlighted the importance of the GF14f protein as a key regulator in the grain-filling process of ISR. It revealed that GF14f transcriptional and protein levels declined more rapidly in ISR compared to ISL during grain-filling. Additionally, the GF14f-RNAi plants specific to the endosperm exhibited improved quality in inferior spikelets. These findings suggest that the enhancement of starch synthesis, increased levels of IAA, ZR, and T6P, along with the rapid decrease in GF14f protein, play a role in enhancing grain-filling in ratoon season rice.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"17 1","pages":"50"},"PeriodicalIF":4.8,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11322495/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信