可引起杂合子半不育并可通过基因组复制克服的水稻染色体易位系的鉴定。

IF 5 1区 农林科学 Q1 AGRONOMY
Rice Pub Date : 2025-08-18 DOI:10.1186/s12284-025-00835-y
Ruilian Deng, Hanli You, Qi Ge, Jinwen Wu, Zhukuan Cheng, Lianjun Zhu, Hang Yu, Lin Chen, Muhammad Qasim Shahid, Zijun Lu, Xiangdong Liu
{"title":"可引起杂合子半不育并可通过基因组复制克服的水稻染色体易位系的鉴定。","authors":"Ruilian Deng, Hanli You, Qi Ge, Jinwen Wu, Zhukuan Cheng, Lianjun Zhu, Hang Yu, Lin Chen, Muhammad Qasim Shahid, Zijun Lu, Xiangdong Liu","doi":"10.1186/s12284-025-00835-y","DOIUrl":null,"url":null,"abstract":"<p><p>Interspecific and intersubspecific hybrid rice have demonstrated substantial heterosis and increased yield potential, yet they are frequently restricted by complex hybrid sterility (HS). Gene regulation has primarily been used to explain the genetic mechanism of HS; however, it is still unclear how cryptic chromosomal structural hybridity results in heterozygote semi-sterility at the molecular level. This study identified a T-DNA-mediated heterozygous mutant mfss (male and female semi-sterility) in rice, of which the self-pollinated progeny would produce heterozygous semi-sterile mutant plants and homozygous fertile mutant plants, mm, with homozygous in inserted T-DNA. The hybrids derived from mm plants crossing with other rice varieties exhibited conservative semi-sterility. Genomic analyses and fluorescence in situ hybridization (FISH) observation revealed that the end of chromosome 6 (170 genes) translocated with the end of chromosome 2 (566 genes) in mm plants. Among these 736 translocated genes, 102 reproduction-concerned genes, including a new gene, MCM5, were detected, which may result in half of gametes lacking many reproduction-concerned genes to display sterility and caused semi-sterility of mfss-heterozygotes. Hybrids derived from an autotetraploid rice line created from mm plants by genome duplication crossed with a neo-tetraploid rice displayed high fertility, implying that the mfss-heterozygote semi-sterility might be overcome by producing polyploid hybrid rice. These findings elucidate the genetic process of reciprocal translocation causing the heterozygote semi-sterility in rice and offer valuable insights for the production of fertile polyploid hybrid rice.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"77"},"PeriodicalIF":5.0000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361019/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification of a Novel Rice Chromosomal Translocation Line that Could Cause the Heterozygote Semi-Sterility and be Overcome by Genomic Duplication.\",\"authors\":\"Ruilian Deng, Hanli You, Qi Ge, Jinwen Wu, Zhukuan Cheng, Lianjun Zhu, Hang Yu, Lin Chen, Muhammad Qasim Shahid, Zijun Lu, Xiangdong Liu\",\"doi\":\"10.1186/s12284-025-00835-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Interspecific and intersubspecific hybrid rice have demonstrated substantial heterosis and increased yield potential, yet they are frequently restricted by complex hybrid sterility (HS). Gene regulation has primarily been used to explain the genetic mechanism of HS; however, it is still unclear how cryptic chromosomal structural hybridity results in heterozygote semi-sterility at the molecular level. This study identified a T-DNA-mediated heterozygous mutant mfss (male and female semi-sterility) in rice, of which the self-pollinated progeny would produce heterozygous semi-sterile mutant plants and homozygous fertile mutant plants, mm, with homozygous in inserted T-DNA. The hybrids derived from mm plants crossing with other rice varieties exhibited conservative semi-sterility. Genomic analyses and fluorescence in situ hybridization (FISH) observation revealed that the end of chromosome 6 (170 genes) translocated with the end of chromosome 2 (566 genes) in mm plants. Among these 736 translocated genes, 102 reproduction-concerned genes, including a new gene, MCM5, were detected, which may result in half of gametes lacking many reproduction-concerned genes to display sterility and caused semi-sterility of mfss-heterozygotes. Hybrids derived from an autotetraploid rice line created from mm plants by genome duplication crossed with a neo-tetraploid rice displayed high fertility, implying that the mfss-heterozygote semi-sterility might be overcome by producing polyploid hybrid rice. These findings elucidate the genetic process of reciprocal translocation causing the heterozygote semi-sterility in rice and offer valuable insights for the production of fertile polyploid hybrid rice.</p>\",\"PeriodicalId\":21408,\"journal\":{\"name\":\"Rice\",\"volume\":\"18 1\",\"pages\":\"77\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361019/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rice\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1186/s12284-025-00835-y\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rice","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s12284-025-00835-y","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

种间和亚种间杂交稻已显示出巨大的杂种优势和产量潜力,但它们经常受到复杂杂交不育(HS)的限制。基因调控主要用于解释HS的遗传机制;然而,目前尚不清楚在分子水平上隐染色体结构杂交是如何导致杂合子半不育的。本研究鉴定了一个T-DNA介导的水稻杂合突变体mfss(雄性和雌性半不育),其自花授粉后代产生杂合半不育突变体植株和插入T-DNA纯合的纯合可育突变体mm。由mm植株与其他水稻品种杂交而成的杂种表现出保守的半不育性。基因组分析和荧光原位杂交(FISH)观察显示,mm植物6号染色体末端(170个基因)与2号染色体末端(566个基因)易位。在这736个易位基因中,检测到102个与生殖相关的基因,包括一个新基因MCM5,这可能导致一半的配子缺乏许多与生殖相关的基因而表现不育,从而导致mfss杂合子的半不育。由mm植株经基因组复制获得的自四倍体水稻系与新四倍体水稻杂交获得的杂种具有较高的育性,这表明多倍体杂交水稻可以克服mfss杂合子的半不育性。这些发现阐明了水稻杂合子半不育的相互易位遗传过程,为多倍体杂交稻的可育性生产提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of a Novel Rice Chromosomal Translocation Line that Could Cause the Heterozygote Semi-Sterility and be Overcome by Genomic Duplication.

Interspecific and intersubspecific hybrid rice have demonstrated substantial heterosis and increased yield potential, yet they are frequently restricted by complex hybrid sterility (HS). Gene regulation has primarily been used to explain the genetic mechanism of HS; however, it is still unclear how cryptic chromosomal structural hybridity results in heterozygote semi-sterility at the molecular level. This study identified a T-DNA-mediated heterozygous mutant mfss (male and female semi-sterility) in rice, of which the self-pollinated progeny would produce heterozygous semi-sterile mutant plants and homozygous fertile mutant plants, mm, with homozygous in inserted T-DNA. The hybrids derived from mm plants crossing with other rice varieties exhibited conservative semi-sterility. Genomic analyses and fluorescence in situ hybridization (FISH) observation revealed that the end of chromosome 6 (170 genes) translocated with the end of chromosome 2 (566 genes) in mm plants. Among these 736 translocated genes, 102 reproduction-concerned genes, including a new gene, MCM5, were detected, which may result in half of gametes lacking many reproduction-concerned genes to display sterility and caused semi-sterility of mfss-heterozygotes. Hybrids derived from an autotetraploid rice line created from mm plants by genome duplication crossed with a neo-tetraploid rice displayed high fertility, implying that the mfss-heterozygote semi-sterility might be overcome by producing polyploid hybrid rice. These findings elucidate the genetic process of reciprocal translocation causing the heterozygote semi-sterility in rice and offer valuable insights for the production of fertile polyploid hybrid rice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rice
Rice AGRONOMY-
CiteScore
10.10
自引率
3.60%
发文量
60
审稿时长
>12 weeks
期刊介绍: Rice aims to fill a glaring void in basic and applied plant science journal publishing. This journal is the world''s only high-quality serial publication for reporting current advances in rice genetics, structural and functional genomics, comparative genomics, molecular biology and physiology, molecular breeding and comparative biology. Rice welcomes review articles and original papers in all of the aforementioned areas and serves as the primary source of newly published information for researchers and students in rice and related research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信