Genome-Wide Identification of the RhoGAP Gene Family and Main Function of OsRhoGAP2 in Seed Germination of Rice by Transcriptome Analysis.

IF 5 1区 农林科学 Q1 AGRONOMY
Rice Pub Date : 2025-08-27 DOI:10.1186/s12284-025-00843-y
Chaowei Fang, Yuanqing Nie, Yifan Bi, Wenjing An, Dongdong Jia, Weihong Liang
{"title":"Genome-Wide Identification of the RhoGAP Gene Family and Main Function of OsRhoGAP2 in Seed Germination of Rice by Transcriptome Analysis.","authors":"Chaowei Fang, Yuanqing Nie, Yifan Bi, Wenjing An, Dongdong Jia, Weihong Liang","doi":"10.1186/s12284-025-00843-y","DOIUrl":null,"url":null,"abstract":"<p><p>Rho GTPase-activating proteins (RhoGAPs) play crucial roles in regulating various biological processes. However, the functions of RhoGAP family genes in rice (Oryza sativa) remain largely unexplored. Here, we identified 19 RhoGAP genes in rice, and preliminarily analyzed the genes information, expression patterns, and evolutionary relationship with AtRhoGAPs in Arabidopsis. Using CRISPR/Cas9-mediated gene editing, we generated loss-of-function mutants of OsRhoGAP2 (rhogap2) and found that seed germination was significantly delayed compared to the wild type (WT). Further analysis revealed that α-amylase activity was reduced in rhogap2 germinating seeds. RNA-seq profiling identified 291 upregulated and 130 downregulated genes in the mutant, with differentially expressed genes (DEGs) primarily enriched in phenylpropanoid biosynthesis and other metabolic pathways. Notably, most phenylpropanoid biosynthesis-related genes exhibited increased expression in rhogap2 germinating seeds. These findings establish a foundational framework for future functional studies of RhoGAP genes in rice and provide novel insights into the molecular mechanisms by which RhoGAPs regulate seed germination in plants.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"83"},"PeriodicalIF":5.0000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12380660/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rice","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s12284-025-00843-y","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Rho GTPase-activating proteins (RhoGAPs) play crucial roles in regulating various biological processes. However, the functions of RhoGAP family genes in rice (Oryza sativa) remain largely unexplored. Here, we identified 19 RhoGAP genes in rice, and preliminarily analyzed the genes information, expression patterns, and evolutionary relationship with AtRhoGAPs in Arabidopsis. Using CRISPR/Cas9-mediated gene editing, we generated loss-of-function mutants of OsRhoGAP2 (rhogap2) and found that seed germination was significantly delayed compared to the wild type (WT). Further analysis revealed that α-amylase activity was reduced in rhogap2 germinating seeds. RNA-seq profiling identified 291 upregulated and 130 downregulated genes in the mutant, with differentially expressed genes (DEGs) primarily enriched in phenylpropanoid biosynthesis and other metabolic pathways. Notably, most phenylpropanoid biosynthesis-related genes exhibited increased expression in rhogap2 germinating seeds. These findings establish a foundational framework for future functional studies of RhoGAP genes in rice and provide novel insights into the molecular mechanisms by which RhoGAPs regulate seed germination in plants.

Abstract Image

Abstract Image

Abstract Image

水稻RhoGAP基因家族的全基因组鉴定及OsRhoGAP2在种子萌发中的主要功能
Rho gtpase激活蛋白(RhoGAPs)在调节多种生物过程中发挥着重要作用。然而,RhoGAP家族基因在水稻(Oryza sativa)中的功能在很大程度上仍未被探索。本研究鉴定了水稻中19个RhoGAP基因,初步分析了拟南芥中RhoGAP基因的信息、表达模式及其与RhoGAP基因的进化关系。利用CRISPR/ cas9介导的基因编辑技术,我们生成了OsRhoGAP2的功能缺失突变体(rhogap2),并发现与野生型(WT)相比,种子萌发明显延迟。进一步分析表明,rhogap2萌发种子中α-淀粉酶活性降低。RNA-seq分析鉴定了突变体中291个上调基因和130个下调基因,其中差异表达基因(DEGs)主要富集于苯丙类生物合成和其他代谢途径。值得注意的是,大多数苯丙素生物合成相关基因在rhogap2萌发种子中表达增加。这些发现为未来水稻RhoGAP基因的功能研究奠定了基础框架,并为RhoGAP调控植物种子萌发的分子机制提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rice
Rice AGRONOMY-
CiteScore
10.10
自引率
3.60%
发文量
60
审稿时长
>12 weeks
期刊介绍: Rice aims to fill a glaring void in basic and applied plant science journal publishing. This journal is the world''s only high-quality serial publication for reporting current advances in rice genetics, structural and functional genomics, comparative genomics, molecular biology and physiology, molecular breeding and comparative biology. Rice welcomes review articles and original papers in all of the aforementioned areas and serves as the primary source of newly published information for researchers and students in rice and related research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信