盐度胁迫诱导植物BARENTSZ相分离形成凝析油。

IF 5 1区 农林科学 Q1 AGRONOMY
Rice Pub Date : 2025-08-11 DOI:10.1186/s12284-025-00830-3
Peigang Li, Lanfeng Wu, Wenchao He, Shanshan Zhang, Chaoying He
{"title":"盐度胁迫诱导植物BARENTSZ相分离形成凝析油。","authors":"Peigang Li, Lanfeng Wu, Wenchao He, Shanshan Zhang, Chaoying He","doi":"10.1186/s12284-025-00830-3","DOIUrl":null,"url":null,"abstract":"<p><p>Phase separation (PS) of BARENTSZ (BTZ), a core member of the exon-junction complex (EJC), is involved in various physiological and developmental processes in animals. However, less is known about plant equivalents. Here, we demonstrated that the loss of function of Oryza sativa BTZ genes (OsBTZs) reduced rice tolerance to salinity stress. Moreover, OsBTZ proteins underwent PS independent of other core members of EJC, forming condensates under salt stress. OsBTZs may recruit proteins that play roles in the salt tolerance response to form cytoplasmic condensates, which act as stress granules. The predicted prion-like domain (PrLD), that originated ancestrally and is functionally conserved, was demonstrated to be key to the PS of OsBTZs upon NaCl treatment. This work revealed a new role for plant BTZs through an evolutionarily conserved mechanism-PS-in the formation of condensates in response to salinity stress, thus providing new insights into the adaptive evolution of plant BTZs under abiotic stress.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"75"},"PeriodicalIF":5.0000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12339837/pdf/","citationCount":"0","resultStr":"{\"title\":\"Salinity Stress Induces Phase Separation of Plant BARENTSZ to Form Condensates.\",\"authors\":\"Peigang Li, Lanfeng Wu, Wenchao He, Shanshan Zhang, Chaoying He\",\"doi\":\"10.1186/s12284-025-00830-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phase separation (PS) of BARENTSZ (BTZ), a core member of the exon-junction complex (EJC), is involved in various physiological and developmental processes in animals. However, less is known about plant equivalents. Here, we demonstrated that the loss of function of Oryza sativa BTZ genes (OsBTZs) reduced rice tolerance to salinity stress. Moreover, OsBTZ proteins underwent PS independent of other core members of EJC, forming condensates under salt stress. OsBTZs may recruit proteins that play roles in the salt tolerance response to form cytoplasmic condensates, which act as stress granules. The predicted prion-like domain (PrLD), that originated ancestrally and is functionally conserved, was demonstrated to be key to the PS of OsBTZs upon NaCl treatment. This work revealed a new role for plant BTZs through an evolutionarily conserved mechanism-PS-in the formation of condensates in response to salinity stress, thus providing new insights into the adaptive evolution of plant BTZs under abiotic stress.</p>\",\"PeriodicalId\":21408,\"journal\":{\"name\":\"Rice\",\"volume\":\"18 1\",\"pages\":\"75\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12339837/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rice\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1186/s12284-025-00830-3\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rice","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s12284-025-00830-3","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

BARENTSZ (BTZ)相分离(PS)是外显子连接复合体(EJC)的核心成员,参与动物的多种生理和发育过程。然而,对植物的等价物知之甚少。本研究表明,水稻BTZ基因(OsBTZs)功能的丧失降低了水稻对盐胁迫的耐受性。此外,OsBTZ蛋白在盐胁迫下独立于EJC的其他核心成员进行PS,形成凝聚物。OsBTZs可能会招募在耐盐反应中起作用的蛋白质,形成细胞质凝聚物,作为胁迫颗粒。预测的朊病毒样结构域(PrLD)起源于祖先,功能保守,被证明是NaCl处理下OsBTZs PS的关键。本研究揭示了植物BTZs在盐度胁迫下凝析油形成中的一个进化保守机制- ps -,从而为植物BTZs在非生物胁迫下的适应性进化提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Salinity Stress Induces Phase Separation of Plant BARENTSZ to Form Condensates.

Phase separation (PS) of BARENTSZ (BTZ), a core member of the exon-junction complex (EJC), is involved in various physiological and developmental processes in animals. However, less is known about plant equivalents. Here, we demonstrated that the loss of function of Oryza sativa BTZ genes (OsBTZs) reduced rice tolerance to salinity stress. Moreover, OsBTZ proteins underwent PS independent of other core members of EJC, forming condensates under salt stress. OsBTZs may recruit proteins that play roles in the salt tolerance response to form cytoplasmic condensates, which act as stress granules. The predicted prion-like domain (PrLD), that originated ancestrally and is functionally conserved, was demonstrated to be key to the PS of OsBTZs upon NaCl treatment. This work revealed a new role for plant BTZs through an evolutionarily conserved mechanism-PS-in the formation of condensates in response to salinity stress, thus providing new insights into the adaptive evolution of plant BTZs under abiotic stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rice
Rice AGRONOMY-
CiteScore
10.10
自引率
3.60%
发文量
60
审稿时长
>12 weeks
期刊介绍: Rice aims to fill a glaring void in basic and applied plant science journal publishing. This journal is the world''s only high-quality serial publication for reporting current advances in rice genetics, structural and functional genomics, comparative genomics, molecular biology and physiology, molecular breeding and comparative biology. Rice welcomes review articles and original papers in all of the aforementioned areas and serves as the primary source of newly published information for researchers and students in rice and related research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信