Rice最新文献

筛选
英文 中文
Modelling and Using Spatial Effects in Nationwide Historical Data Improve Genomic Prediction of Rice Heading Date in Japan. 利用全国历史数据建模和空间效应改进日本水稻抽穗期基因组预测。
IF 4.8 1区 农林科学
Rice Pub Date : 2025-04-11 DOI: 10.1186/s12284-025-00778-4
Shoji Taniguchi, Takeshi Hayashi, Hiroshi Nakagawa, Kei Matsushita, Hiromi Kajiya-Kanegae, Jun-Ichi Yonemaru, Akitoshi Goto
{"title":"Modelling and Using Spatial Effects in Nationwide Historical Data Improve Genomic Prediction of Rice Heading Date in Japan.","authors":"Shoji Taniguchi, Takeshi Hayashi, Hiroshi Nakagawa, Kei Matsushita, Hiromi Kajiya-Kanegae, Jun-Ichi Yonemaru, Akitoshi Goto","doi":"10.1186/s12284-025-00778-4","DOIUrl":"https://doi.org/10.1186/s12284-025-00778-4","url":null,"abstract":"<p><p>Genomic prediction is a promising strategy for enhancing crop breeding efficiency. Historical data of breeding and cultivation tests from geographically wide regions presumably contain rich information for training genomic prediction models. Therefore, it is essential to explore methodologies to effectively handle such data. To improve the prediction accuracy of models using historical data, we incorporated a spatial model to account for spatial structures among field stations, in addition to conventional genomic prediction models. Targeting the rice heading date from historical data across Japan, we first constructed conventional genomic prediction models using genomic and/or meteorological elements as predictors. Next, we obtain the residual terms. Assuming that the residual terms were partly explained by the spatial effects assigned to each field station, a spatial model was applied to the residual terms and the spatial effects were calculated. Our genomic prediction models performed best when the genome, meteorological elements, and genome-meteorology interactions were included (model 3), and they performed second best when the genome and meteorological elements were included (model 2). For these genomic prediction models, residual terms were spatially biased and corrected for spatial effects. For the best model (model 3), the root mean squared errors (RMSE) of genomic prediction combined with spatial effects were approximately 3.6 days under tenfold cross-validation and approximately 5.1 days under leave-one-line-out cross-validation. The inclusion of the spatial effects improved the RMSEs by approximately 15% and 9% for the former and latter, respectively. Lines with highly improved predictions of the spatial effects were developed, mainly in the northern Tohoku region. The spatial effects were heterogeneous and regional patterns were detected. These findings imply that spatial effects are important not only for improving prediction performance but also for dissecting the model itself to identify the factors contributing to model improvement.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"27"},"PeriodicalIF":4.8,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11992326/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144045619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: E3 Ubiquitin Ligase OsRFI2 Regulates Salinity Tolerance by Targeting Ascorbate Peroxidase OsAPX8 for its Degradation in Rice. 修正:E3泛素连接酶OsRFI2通过靶向抗坏血酸过氧化物酶OsAPX8降解来调节水稻的耐盐性。
IF 4.8 1区 农林科学
Rice Pub Date : 2025-04-11 DOI: 10.1186/s12284-025-00780-w
Wenjing Zhao, Junli Wen, Juan Zhao, Linlin Liu, Mei Wang, Menghan Huang, Chaowei Fang, Qingpo Liu
{"title":"Correction: E3 Ubiquitin Ligase OsRFI2 Regulates Salinity Tolerance by Targeting Ascorbate Peroxidase OsAPX8 for its Degradation in Rice.","authors":"Wenjing Zhao, Junli Wen, Juan Zhao, Linlin Liu, Mei Wang, Menghan Huang, Chaowei Fang, Qingpo Liu","doi":"10.1186/s12284-025-00780-w","DOIUrl":"https://doi.org/10.1186/s12284-025-00780-w","url":null,"abstract":"","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"26"},"PeriodicalIF":4.8,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11985708/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143992531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microrchidia OsMORC6 Positively Regulates Cadmium Tolerance and Uptake by Mediating DNA Methylation in Rice. Microrchidia OsMORC6通过介导DNA甲基化正向调节水稻对镉的耐受和吸收。
IF 4.8 1区 农林科学
Rice Pub Date : 2025-04-09 DOI: 10.1186/s12284-025-00785-5
Jingai Tan, Muhammad Fahad, Lantian Zhang, Liang Wu, Xia Wu
{"title":"Microrchidia OsMORC6 Positively Regulates Cadmium Tolerance and Uptake by Mediating DNA Methylation in Rice.","authors":"Jingai Tan, Muhammad Fahad, Lantian Zhang, Liang Wu, Xia Wu","doi":"10.1186/s12284-025-00785-5","DOIUrl":"10.1186/s12284-025-00785-5","url":null,"abstract":"<p><p>Rice (Oryza sativa) is an extremely important global food crop. However, cadmium (Cd) contamination in paddy fields poses a serious threat to human health worldwide. To generate low-Cd or Cd-free rice germplasms, it is essential to understand the molecular mechanisms involved in Cd tolerance, uptake, and translocation from soil to plant. In this study, we identify three Microrchidia proteins, OsMORC6a, OsMORC6b, and OsMORC6c, that regulate Cd tolerance and accumulation, although they do not alter the translocation of Cd from roots to shoots. Knockout of all three genes results in reducing Cd accumulation and increasing sensitivity to Cd stress. Furthermore, transcriptome analysis reveals 1,127 differentially expressed genes (DEGs) in the morc6abc mutants, which are significantly enriched in 'plant-type cell wall' and 'oxidoreductase activity' pathways. Through an integrating DNA methylome and transcriptome data, we identify 247 hyper-DMR-associated DEGs and 325 hypo-DMR-associated DEGs in morc6abc mutants. Gene Ontology (Go) enrichment analysis reveals that OsMORC6 proteins positively regulate Cd tolerance and uptake by mediating DNA methylation, which regulates the proper expression of genes related to plant cell wall and oxidative stress under Cd stress. Taken together, our findings reveal novel genes that mediate Cd tolerance and accumulation by affecting DNA methylation, offering valuable resource for breeding low-Cd or Cd-free rice germplasms.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"25"},"PeriodicalIF":4.8,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11981988/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143812230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genomic Regions and Molecular Markers Associated with Deeper Rooting to Improve Grain Yield in Aerobic Rice (Oryza sativa L.) Production Systems. 需氧水稻深生根提高籽粒产量的相关基因组区域和分子标记生产系统。
IF 4.8 1区 农林科学
Rice Pub Date : 2025-04-07 DOI: 10.1186/s12284-025-00784-6
Wenliu Gong, Ricky Vinarao, Christopher Proud, Shona Wood, Peter Snell, Shu Fukai, Jaquie Mitchell
{"title":"Genomic Regions and Molecular Markers Associated with Deeper Rooting to Improve Grain Yield in Aerobic Rice (Oryza sativa L.) Production Systems.","authors":"Wenliu Gong, Ricky Vinarao, Christopher Proud, Shona Wood, Peter Snell, Shu Fukai, Jaquie Mitchell","doi":"10.1186/s12284-025-00784-6","DOIUrl":"10.1186/s12284-025-00784-6","url":null,"abstract":"<p><p>A greater proportion of deep roots could ensure water uptake at depth and is considered a key trait for aerobic adaptation. However, the study of genomic regions and molecular markers related to deep rooting is limited especially for aerobic rice production. This study utilised 705 genotypes composed of recombinant inbred lines and predominantly diverse japonica sets to identify and validate genomic regions associated with the proportion of deep roots below 20 cm (DR20). Six quantitative trait loci (QTL) for DR20 were identified under well-watered aerobic conditions, explaining 5.3-23.7% of the phenotypic variance and introgression of the favourable alleles resulted in 10-21.6% deeper roots. Simultaneous development of high throughput molecular markers and QTL validation demonstrated the effect of four (qADR1, qADR9, qADR10, and qADR11) out of six QTL increasing DR20 up to 29.4% across genetic backgrounds. The four QTL also conferred a mean grain yield advantage of 1.46 t/ha. This study reports for the first time validated genomic regions and high throughput molecular markers associated with deeper rooting and improved grain yield in rice under aerobic conditions. These tools may accelerate the development of rice adapted to aerobic production systems and ultimately enhance sustainable rice production in areas with limited water availability.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"24"},"PeriodicalIF":4.8,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11977055/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143803969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive GWAS and Transcriptome Analysis Discovered Candidate Gene Associated with Starch Pasting Properties of Temperate japonica rice (Oryza sativa L.). 综合GWAS和转录组分析发现与温带粳稻淀粉糊化特性相关的候选基因。
IF 4.8 1区 农林科学
Rice Pub Date : 2025-04-02 DOI: 10.1186/s12284-025-00782-8
Yoon Kyung Lee, Su Jang, Jihwan Im, Hee-Jong Koh
{"title":"Comprehensive GWAS and Transcriptome Analysis Discovered Candidate Gene Associated with Starch Pasting Properties of Temperate japonica rice (Oryza sativa L.).","authors":"Yoon Kyung Lee, Su Jang, Jihwan Im, Hee-Jong Koh","doi":"10.1186/s12284-025-00782-8","DOIUrl":"10.1186/s12284-025-00782-8","url":null,"abstract":"<p><p>The growing market demand for high eating quality (EQ) rice, driven by improved living standards, highlights the need to better understand its complex genetic architecture. Starch pasting properties are critical determinants of rice EQ, yet their genetic basis remains incompletely understood. This study aimed to unravel the genetic factors underlying starch pasting properties in temperate japonica rice panel of 284 accessions comprising landraces and improved varieties. Genome-wide association studies conducted for two years identified 59 significant lead SNPs. Among them, consistent lead SNPs on chromosomes 2 and 8, in addition to the well-characterized Wx gene on chromosome 6 were detected from multiple traits and years. LD block analysis and transcriptome analysis of accessions with extreme phenotypes identified OsGLUTN (Os02g0224300/LOC_Os02g13130), a gene encoding a high molecular weight glutenin subunit-like protein, as a strong candidate. Clustering patterns of differential gene expressions showed higher expression of OsGLUTN in low-viscosity cultivars and lower expression in high-viscosity cultivars. Haplotype analysis revealed significant variations in viscosity traits associated to OsGLUTN alleles, and functional validation using enhancer active tagging line showed significantly reduced starch viscosity, confirming its role in EQ regulation. While the Wx accounted for most viscosity traits, the identification of novel loci on chromosomes 2 and 8 highlights additional genetic factors to EQ variation. These findings deepen our understanding of how storage protein metabolism impacts rice grain quality. The identification of OsGLUTN provides a foundation for breeding programs focused on developing rice varieties with improved cooking and eating qualities, addressing growing consumer demand for premium rice.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"23"},"PeriodicalIF":4.8,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11961803/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143764954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overexpression of lncRNA22524 from Dongxiang Wild Rice Reduces Drought and Salt Stress Tolerance in Cultivated Rice. 东乡野生稻lncRNA22524过表达降低栽培稻抗旱性和耐盐性
IF 4.8 1区 农林科学
Rice Pub Date : 2025-03-25 DOI: 10.1186/s12284-025-00777-5
Yong Chen, Yingying Mao, Hong Xie, Xinjian Zou, Wanling Yang, Rifang Gao, Jiankun Xie, Fantao Zhang
{"title":"Overexpression of lncRNA22524 from Dongxiang Wild Rice Reduces Drought and Salt Stress Tolerance in Cultivated Rice.","authors":"Yong Chen, Yingying Mao, Hong Xie, Xinjian Zou, Wanling Yang, Rifang Gao, Jiankun Xie, Fantao Zhang","doi":"10.1186/s12284-025-00777-5","DOIUrl":"10.1186/s12284-025-00777-5","url":null,"abstract":"<p><p>Drought and salt stresses are major challenges to rice production, and a deep understanding of the mechanisms for tolerance could help deal with the challenges. Long non-coding RNAs (lncRNAs) play crucial roles in gene regulation. Previously, lncRNA22524 has been identified as a drought stress-responsive lncRNA from Dongxiang wild rice (DXWR). Nevertheless, its reactions to abiotic stresses in genetics and physiology remained unclear. In this study, we employed a rapid amplification of cDNA ends (RACE) to obtain the full-length cDNA of lncRNA22524 from DXWR, analyzed its cellular localization, built an overexpression vector to generate transgenic lines of cultivated rice and evaluated its impact in genetics and physiology. After treated with drought and salt stress, the overexpressed lines exhibited much more injuries and lower rates of survival, more reactive oxygen species (ROS) and malondialdehyde (MDA), lower antioxidant enzymes and lower proline (Pro) and soluble sugar (SS) than their wild-type (WT). Furthermore, transcriptome analysis of overexpressed lines with weaker tolerance than WT revealed 1,233 differentially expressed genes (DEGs), where most DEGs were involved in phenylpropanoid biosynthesis, photosynthesis and glutathione metabolism. These findings demonstrated that lncRNA22524 negatively regulated rice responses to drought and salt stress, which clear way of working from transcription to metabolic products should be worth of further study.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"22"},"PeriodicalIF":4.8,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11933495/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143701079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Allelic Variation of Hd17 for Rice Heading Date is Caused by Natural Selection. 自然选择导致水稻发棵期 Hd17 的等位基因变异
IF 4.8 1区 农林科学
Rice Pub Date : 2025-03-24 DOI: 10.1186/s12284-025-00773-9
Zifeng Yang, Yun Li, Jin Liu, Shuiqing Wu, Xuelin Wang, Min Guan, Yanyun Li, Haitao Zhu, Guifu Liu, Shaokui Wang, Guiquan Zhang
{"title":"Allelic Variation of Hd17 for Rice Heading Date is Caused by Natural Selection.","authors":"Zifeng Yang, Yun Li, Jin Liu, Shuiqing Wu, Xuelin Wang, Min Guan, Yanyun Li, Haitao Zhu, Guifu Liu, Shaokui Wang, Guiquan Zhang","doi":"10.1186/s12284-025-00773-9","DOIUrl":"10.1186/s12284-025-00773-9","url":null,"abstract":"<p><p>Heading date is an important agronomic trait of rice, which directly determines adaptability and yield. Selection for natural variated alleles for heading date genes is an important manifestation of rice domestication that allows rice to spread to more broad geographic areas. In this study, three alleles of the Hd17 gene for heading date were identified by sequence analysis of 14 single-segment substitution lines, 6 wild rice species, and 2524 accessions of O. sativa. The Hd17-1 allele is an ancestral type with a middle heading date. The Hd17-2 allele was caused by the functional nucleotide polymorphism (FNP) of C to T at position 1016 of the gene and exhibits delay heading. The Hd17-3 allele was caused by the FNP of C to T in 1673 point of the gene and shows earlier heading. The Hd17-1 allele is mainly distributed in tropical regions, carrying by 5 wild rice species, O. glaberrima, and two O. sativa (Aus/Boro and tropical japonica types). The Hd17-2 allele is mainly distributed in subtropical regions, carrying by O. meridionalis, O. rufipogon, and two O. sativa (indica subspecies and Basmati/Sandri types). The Hd17-3 allele is mainly distributed in temperate regions, carrying only by temperate japonica of O. sativa. Hd17-2 and Hd17-3 had been evolved from Hd17-1, independently. Three different rice growing regions formed three alleles of Hd17, showing that the allelic variation of Hd17 is the result of natural selection. We also found that Hd17 controls heading date by up-regulating Ghd7 and down-regulating Ehd1 under long day conditions. Our findings will help to understand the evolution and the regulation of Hd17 in rice.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"21"},"PeriodicalIF":4.8,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11933555/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143701039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The OsZHD1 and OsZHD2, Two Zinc Finger Homeobox Transcription Factor, Redundantly Control Grain Size by Influencing Cell Proliferation in Rice. 两种锌指同源核转录因子 OsZHD1 和 OsZHD2 通过影响水稻细胞增殖冗余地控制粒度
IF 4.8 1区 农林科学
Rice Pub Date : 2025-03-22 DOI: 10.1186/s12284-025-00774-8
Mingliang Guo, Chun Zheng, Chao Shi, Xiaozhuan Lu, Zeyuan She, Shuyu Jiang, Dagang Tian, Yuan Qin
{"title":"The OsZHD1 and OsZHD2, Two Zinc Finger Homeobox Transcription Factor, Redundantly Control Grain Size by Influencing Cell Proliferation in Rice.","authors":"Mingliang Guo, Chun Zheng, Chao Shi, Xiaozhuan Lu, Zeyuan She, Shuyu Jiang, Dagang Tian, Yuan Qin","doi":"10.1186/s12284-025-00774-8","DOIUrl":"10.1186/s12284-025-00774-8","url":null,"abstract":"<p><p>Grain size is vital determinant for grain yield and quality, which specified by its three-dimensional structure of seeds (length, width and thickness). The ZINC FINGER-HOMEODOMAIN (ZHD) proteins play critical roles in plant growth and development. However, the information regarding the function in reproductive development of ZHD proteins is scarce. Here, we deeply characterized the phenotype of oszhd1, oszhd2, and oszhd1oszhd2. The single mutants of OsZHD1/2 were similar with wild type. Nevertheless, the double mutant displayed dwarfism and smaller reproductive organs, and shorter, narrower, and thinner grain size. oszhd1oszhd2 revealed a significant decrease in total cell length and number, and single cell width in outer parenchyma; reducing the average width of longitudinal epidermal cells, but the length were increased in outer and inner glumes of oszhd1oszhd2 compared with wild-type, oszhd1-1, oszhd2-1, respectively. OsZHD1 and OsZHD2 encoded the nucleus protein and were distributed predominately in stem and the developing spikelets, asserting their roles in grain size. Meanwhile, yeast two-hybrid, bimolecular fluorescence complementation, and Co-immunoprecipitation assay clarified that OsZHD1 could directly interacted with OsZHD2. The differential expression analysis showed that 839 DEGs, which were down-regulated in oszhd1oszhd2 than wild type and single mutants, were mainly enriched in secondary metabolite biosynthetic, integral component of membrane, and transporter activity pathway. Moreover, it is reliable that the altered expression of cell cycle and expansion-related and grain size-related genes were observed in RNA-seq data, highly consistent with the qRT-PCR results. Altogether, our results suggest that OsZHD1/2 are functional redundancy and involved in regulating grain size by influencing cell proliferation in rice.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"20"},"PeriodicalIF":4.8,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928714/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143677128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interspecific Hybridization Enhanced Tolerance to Salinity and Cadmium Stress Through Modifying Biochemical, Physiological, and Resistance Gene Levels, Especially in Polyploid Rice: A Sustainable Way for Stress-Resilient Rice. 通过改变多倍体水稻的生化、生理和抗性基因水平,种间杂交提高了水稻对盐和镉胁迫的耐受性:一条可持续的抗逆性途径。
IF 4.8 1区 农林科学
Rice Pub Date : 2025-03-22 DOI: 10.1186/s12284-025-00776-6
Lixia Sun, Fozia Ghouri, Jiacheng Jin, Minghui Zhong, Weicong Huang, Zijun Lu, Jinwen Wu, Xiangdong Liu, Muhammad Qasim Shahid
{"title":"Interspecific Hybridization Enhanced Tolerance to Salinity and Cadmium Stress Through Modifying Biochemical, Physiological, and Resistance Gene Levels, Especially in Polyploid Rice: A Sustainable Way for Stress-Resilient Rice.","authors":"Lixia Sun, Fozia Ghouri, Jiacheng Jin, Minghui Zhong, Weicong Huang, Zijun Lu, Jinwen Wu, Xiangdong Liu, Muhammad Qasim Shahid","doi":"10.1186/s12284-025-00776-6","DOIUrl":"10.1186/s12284-025-00776-6","url":null,"abstract":"<p><p>Polyploid plants exhibit strong resistance to salt and cadmium (Cd) stress, which can adversely affect their growth, reducing crop quality and yield. Transcriptome analysis, antioxidant enzymatic activities, physiological measurements of reactive oxygen species, and heterosis analysis were performed on hybrids with neo-tetraploid rice and its progenitors. The results showed that diploid hybrids had fluctuating yields in early and late seasons, while tetraploid hybrids had consistent grain yield throughout. Transcriptome analysis revealed that gene expression related to sugar metabolism processes increased in tetraploid hybrids. Transcriptome analysis revealed several genes associated with heterosis and stress, including OsEAF6, which is associated with heterosis, and OsCIPK14, which is involved in defense signalling pathways. Furthermore, compared to the parents, hybrids have a much higher number of genes associated with abiotic stress. Consequently, diploid and tetraploid hybrids were treated with Cd (0 and 100 µM) and NaCl (200 mM) in the present study. Under Cd toxicity, the levels of carotenoids were reduced by 33.31% and 45.59%, while the levels of chlorophyll a declined by 16.00% and 27.81% in tetraploid and diploid hybrids, respectively, compared to the control. Tetraploid hybrids had the highest germination rate under salt stress and the lowest Cd uptake compared to diploid hybrids and their parents. In general, the activities of antioxidant enzymes exhibited a considerable drop, whereas the levels of H<sub>2</sub>O<sub>2</sub> and MDA showed a remarkable increase in parents compared to hybrids. Under cadmium toxicity, the expression of OsERF1 in tetraploid rice was increased, and OsABCC1 and OsHMA3 were highly expressed in neo-tetraploid rice. Interspecific hybrid (indica and japonica) displayed enhanced tolerance to cadmium and salinity stress, potentially serving as a natural resource to improve rice resilience. These findings provide a basis for understanding polyploid rice's gene expression pattern, environmental tolerance, and heterosis.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"19"},"PeriodicalIF":4.8,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928717/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143677124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developmental Dynamics of Intercalary Meristem and Pith Cavity in Rice Stems. 水稻茎髓间分生组织和髓腔的发育动态
IF 4.8 1区 农林科学
Rice Pub Date : 2025-03-18 DOI: 10.1186/s12284-025-00772-w
Keisuke Nagai, Yoko Niimi, Misaki Ohsato, Motoyuki Ashikari
{"title":"Developmental Dynamics of Intercalary Meristem and Pith Cavity in Rice Stems.","authors":"Keisuke Nagai, Yoko Niimi, Misaki Ohsato, Motoyuki Ashikari","doi":"10.1186/s12284-025-00772-w","DOIUrl":"10.1186/s12284-025-00772-w","url":null,"abstract":"<p><p>In rice, internode elongation is a critical aspect of plant development and agricultural productivity. Previous morphological and histochemical studies using [<sup>3</sup>H]thymidine have visualized the cell division zone (intercalary meristem) in internodes. However, it has remained unclear how the intercalary meristem forms during stem development. In addition, while a pith cavity forms in the central part of the rice stem, the spatiotemporal relationship between pith cavity formation and intercalary meristem development is not well understood. Therefore, we performed histological analysis of intercalary meristem and pith cavity development using C9285, a deepwater rice variety that shows internode elongation from the vegetative growth stage. We classified the developmental stages of the stem into four stages based on the analysis of pith cavity formation using Trypan blue, Calcein-AM, and MitoRed staining, and visualized dividing cells using the Click-iT EdU imaging assay. In Stage 1, no pith cavity was formed. Vertical cell rows were observed between above the axillary bud attachment and the upper node, suggesting anticlinal divisions that lead to internode formation in the early stage of stem development. In Stage 2, the first pith cavity formed in the pith of the foot, which is the region of axillary bud attachment. Compared to cell division in the internode, that in the foot was significantly activated resulting in slight elongation from Stage 1 to Stage 2. In Stage 3, cell division in the foot ceased, while active cell division at the base of the internode led to significant vertical elongation. The second pith cavity formed due to cell death in the pith of the internode. In Stage 4, the two pith cavities connected to form a single large pith cavity. Although the intercalary meristem maintained cell division activity, the number of cell divisions decreased. Based on these results, we propose a model for stem development that involves two phases of elongation regulation: primary elongation involving slight elongation in the foot, and secondary elongation involving significant internode elongation due to the activation of cell division and cell elongation in the intercalary meristem. This is the first study to anatomically elucidate the spatiotemporal relationship between intercalary meristem development and pith cavity formation in rice stem development. It provides new insights for future research on rice stem development and studies of other grass species.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"18"},"PeriodicalIF":4.8,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11920487/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143658550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信