{"title":"水稻氨基酸调控:综合机制及农业应用。","authors":"Hangfei Luo, Bowen Wu, Bakht Amin, Jiaxu Li, Zhongbo Chen, Jian Shi, Weiting Huang, Zhongming Fang","doi":"10.1186/s12284-025-00829-w","DOIUrl":null,"url":null,"abstract":"<p><p>This review synthesizes how amino acid (AA) metabolism regulates rice stress tolerance, growth and quality through stress protection and growth-modulating pathways, bridging mechanisms to field applications. Under abiotic stresses, rice accumulates specific AAs-notably proline (Pro), γ-aminobutyric acid (GABA), and branched-chain AAs (BCAAs)-as osmoprotectants and antioxidants, correlating strongly with stress tolerance. Genetic evidence establishes causality: overexpression of biosynthetic genes (e.g., OsOAT for Pro, OsDIAT for BCAAs), while suppressing catabolism (e.g., OsProDH knockout) or engineering AA transporters (AATs) (e.g., ABA-induced OsANT1 for amino acids redistribution) enhances tolerance. Integrated AA biosynthetic, catabolic, and transport pathways collectively maintain cellular function under stress. These insights enable practical strategies: exogenous AA treatments (e.g., Pro, GABA) mitigate stress damage, while breeding/engineering (e.g., OsAAP3, OsAAP11, and OsProDH knockout) develops high-yield, high-quality, and stress-tolerant rice. Future work should translate molecular insights into field applications, addressing trade-offs between growth, nutrition, and tolerance to enhance climate-resilient rice production.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"73"},"PeriodicalIF":5.0000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12304346/pdf/","citationCount":"0","resultStr":"{\"title\":\"Amino Acid Regulation in Rice: Integrated Mechanisms and Agricultural Applications.\",\"authors\":\"Hangfei Luo, Bowen Wu, Bakht Amin, Jiaxu Li, Zhongbo Chen, Jian Shi, Weiting Huang, Zhongming Fang\",\"doi\":\"10.1186/s12284-025-00829-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This review synthesizes how amino acid (AA) metabolism regulates rice stress tolerance, growth and quality through stress protection and growth-modulating pathways, bridging mechanisms to field applications. Under abiotic stresses, rice accumulates specific AAs-notably proline (Pro), γ-aminobutyric acid (GABA), and branched-chain AAs (BCAAs)-as osmoprotectants and antioxidants, correlating strongly with stress tolerance. Genetic evidence establishes causality: overexpression of biosynthetic genes (e.g., OsOAT for Pro, OsDIAT for BCAAs), while suppressing catabolism (e.g., OsProDH knockout) or engineering AA transporters (AATs) (e.g., ABA-induced OsANT1 for amino acids redistribution) enhances tolerance. Integrated AA biosynthetic, catabolic, and transport pathways collectively maintain cellular function under stress. These insights enable practical strategies: exogenous AA treatments (e.g., Pro, GABA) mitigate stress damage, while breeding/engineering (e.g., OsAAP3, OsAAP11, and OsProDH knockout) develops high-yield, high-quality, and stress-tolerant rice. Future work should translate molecular insights into field applications, addressing trade-offs between growth, nutrition, and tolerance to enhance climate-resilient rice production.</p>\",\"PeriodicalId\":21408,\"journal\":{\"name\":\"Rice\",\"volume\":\"18 1\",\"pages\":\"73\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12304346/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rice\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1186/s12284-025-00829-w\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rice","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s12284-025-00829-w","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Amino Acid Regulation in Rice: Integrated Mechanisms and Agricultural Applications.
This review synthesizes how amino acid (AA) metabolism regulates rice stress tolerance, growth and quality through stress protection and growth-modulating pathways, bridging mechanisms to field applications. Under abiotic stresses, rice accumulates specific AAs-notably proline (Pro), γ-aminobutyric acid (GABA), and branched-chain AAs (BCAAs)-as osmoprotectants and antioxidants, correlating strongly with stress tolerance. Genetic evidence establishes causality: overexpression of biosynthetic genes (e.g., OsOAT for Pro, OsDIAT for BCAAs), while suppressing catabolism (e.g., OsProDH knockout) or engineering AA transporters (AATs) (e.g., ABA-induced OsANT1 for amino acids redistribution) enhances tolerance. Integrated AA biosynthetic, catabolic, and transport pathways collectively maintain cellular function under stress. These insights enable practical strategies: exogenous AA treatments (e.g., Pro, GABA) mitigate stress damage, while breeding/engineering (e.g., OsAAP3, OsAAP11, and OsProDH knockout) develops high-yield, high-quality, and stress-tolerant rice. Future work should translate molecular insights into field applications, addressing trade-offs between growth, nutrition, and tolerance to enhance climate-resilient rice production.
期刊介绍:
Rice aims to fill a glaring void in basic and applied plant science journal publishing. This journal is the world''s only high-quality serial publication for reporting current advances in rice genetics, structural and functional genomics, comparative genomics, molecular biology and physiology, molecular breeding and comparative biology. Rice welcomes review articles and original papers in all of the aforementioned areas and serves as the primary source of newly published information for researchers and students in rice and related research.