RicePub Date : 2025-03-14DOI: 10.1186/s12284-025-00775-7
Ki-Beom Moon, Ji-Sun Park, Han-Gyeul Kim, Jae-Heung Jeon, Tae-Ho Kwon, Kyung-Sook Chung, Hyo-Jun Lee, Hyun-Soon Kim
{"title":"Functional Analysis of Mature Activin A Produced by Enterokinase in Plant Cells.","authors":"Ki-Beom Moon, Ji-Sun Park, Han-Gyeul Kim, Jae-Heung Jeon, Tae-Ho Kwon, Kyung-Sook Chung, Hyo-Jun Lee, Hyun-Soon Kim","doi":"10.1186/s12284-025-00775-7","DOIUrl":"10.1186/s12284-025-00775-7","url":null,"abstract":"<p><p>Molecular farming for producing biopharmaceuticals in plants is considered an excellent method to replace some of the production methods currently used, and a significant number of recombinant proteins have already shown the potential to facilitate this. In particular, production of activin A, which has a variety of important biological functions in humans, is limited. The purpose of this study was to develop a safe, stable, and efficient plant-based in vitro production system for activin A, assess its biological activity in cancer cells, and demonstrate its potential for use in cancer research. We evaluated the expression and production of activin A in plant cells through a mass culture and secretion system. The formation of mature activin A homodimers, produced by enterokinase, was also assessed. Southern blot and inverse PCR were performed to investigate the gene insertion sites in the plants, and the stability of activin A was evaluated over six months under various pH conditions. The activity of plant-derived activin A was analyzed in HEK293T, Huh7, MCF7, and MDA-MB-231 cancer cell lines using luciferase reporter, migration, phosphorylation, and gelatin zymography assays. We developed cell line #71, which showed the highest levels of mature activin A expression (8.44 μg/g calli fresh weight) and had multicopy gene insertions. Pro-activin A was converted to mature activin A using enterokinase. We demonstrated that the optimal stability of plant-derived activin A was maintained for six months at pH 7 below 4 °C. Plant-derived activin A significantly enhanced activin A signaling activity in HEK293T, Huh7, and MCF7 cancer cells. Additionally, we confirmed that plant-derived activin A inhibited the growth of Huh7 cancer cells by activating the Smad pathway without affecting the MAPK pathway. Contrastingly, in MDA-MB-231 breast cancer cells, plant-derived activin A promoted cell migration. Our results confirm that plant-derived activin A, produced using a mass production system, exhibits full biological activity and affects cancer cell behavior in a manner similar to activin A derived from traditional mammalian systems. Furthermore, this study highlights the importance of considering cellular context when determining the functional outcomes of activin A treatment.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"16"},"PeriodicalIF":4.8,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11906942/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143625827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RicePub Date : 2025-03-14DOI: 10.1186/s12284-025-00766-8
Jumei Liu, Jiahui Cao, Rina Su, Lei Yan, Kexin Wang, Haiyang Hu, Zhihua Bao
{"title":"Variations in the N<sub>2</sub> Fixation and CH<sub>4</sub> Oxidation Activities of Type I Methanotrophs in the Rice Roots in Saline-Alkali Paddy Field Under Nitrogen Fertilization.","authors":"Jumei Liu, Jiahui Cao, Rina Su, Lei Yan, Kexin Wang, Haiyang Hu, Zhihua Bao","doi":"10.1186/s12284-025-00766-8","DOIUrl":"10.1186/s12284-025-00766-8","url":null,"abstract":"<p><p>The root-associated methanotrophs contribute to N<sub>2</sub> fixation and CH<sub>4</sub> oxidation in paddy fields under N-limited conditions. However, the impact of nitrogen inputs on N₂ fixation and CH₄ oxidation by methanotrophs is largely unknown, especially in saline-alkali paddy fields with higher nitrogen application. This study explored the impact of nitrogen fertilization on N₂ fixation and CH₄ oxidation by root-associated active diazotrophic and methanotrophic communities in a saline-alkali paddy field using <sup>15</sup>N-N<sub>2</sub> and <sup>13</sup>C-CH<sub>4</sub> isotope feeding experiments along with RNA-based sequencing. The <sup>15</sup>N and <sup>13</sup>C isotope feeding experiments showed that the CH₄ oxidation-dependent nitrogen fixation rate of methanotrophs (<sup>15</sup>N and <sup>13</sup>C) in the roots of two rice cultivars was significantly higher than the CH₄ oxidation-independent nitrogen fixation rate of heterotrophic diazotrophs (only <sup>15</sup>N) under nitrogen fertilization (SN) in a saline-alkali environment (P < 0.05). For Kongyu131 rice, the CH₄ oxidation-dependent nitrogen fixation rate ranged from 1.17 to 4.15 μmol/h/g, while the CH₄ oxidation-independent nitrogen fixation rate was determined to be 1.10 to 3.17 μmol/h/g. In J3 rice, these rates were 7.30 to 9.22 μmol/h/g and 5.76 to 4.85 μmol/h/g, respectively (P < 0.05). Moreover, both N<sub>2</sub> fixation and CH<sub>4</sub> oxidation rates of methanotrophs in the roots of salt-alkali tolerant J3 cultivar (9.22 μmol/h/g for N<sub>2</sub> fixation; 0.09 μmol/h/g for CH<sub>4</sub> oxidation) were significantly higher than those in the roots of the common rice cultivar Kongyu131 (4.15 μmol/h/g for N₂ fixation; 0.03 μmol/h/g for CH₄ oxidation) under nitrogen fertilization (P < 0.01). Thus, methanotrophs associated with J3 rice roots demonstrated improved N<sub>2</sub> fixation and CH<sub>4</sub> oxidation activities under saline-alkali stress in the presence of nitrogen fertilizer. Even heterotrophic diazotrophs in J3 rice roots showed enhanced N<sub>2</sub> fixation with (SN) or without (LN) nitrogen inputs. The RNA-based amplicon sequencing showed that nitrogen fertilizer had a greater influence on diazotrophic and methanotrophic communities than the differences between rice cultivars. Further, active Methylomonas (type I methanotrophs) dominated the root-associated diazotrophic (9.8-20.9%) and methanotrophic (46.8-80.3%) communities. Within these, Methylomonas methanica (13.3 vs. 3.8%) and Methylomonas paludis (8.8 vs. 27.4%) were determined as the common genera in the diazotrophic and methanotrophic communities, respectively, with both proportions undergoing significant shifts under SN conditions. Whereas the LN condition led to high CH<sub>4</sub> oxidation activity and a relatively high abundance of Methylocystis (26.0%) in the roots of Kongyu131 rice, which sharply decreased under the SN condition (0.3%). The findings revealed that CH<sub>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"17"},"PeriodicalIF":4.8,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11909318/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143633634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Revealing Genomic Traits and Evolutionary Insights of Oryza officinalis from Southern China Through Genome Assembly and Transcriptome Analysis.","authors":"Can Chen, Haifei Hu, Hui Guo, Xiuzhong Xia, Zongqiong Zhang, Baoxuan Nong, Rui Feng, Shuhui Liang, Boheng Liu, Jianhui Liu, Danting Li, Junliang Zhao, Xinghai Yang","doi":"10.1186/s12284-025-00769-5","DOIUrl":"10.1186/s12284-025-00769-5","url":null,"abstract":"<p><p>Wild rice, as the ancestor of cultivated rice, has accumulated a wide range of beneficial traits through prolonged natural selection and evolution. Oryza officinalis, belonging to the CC genome, differs significantly from the AA genome. In this study, we utilized second- and third-generation sequencing, along with Hi-C technology, to assemble the genome of MT10 (O. officinalis). The assembled genome is 552.58 Mb, with contigs and scaffold N50 values of 40.04 and 44.48 Mb, respectively, and 96.73% of the sequences anchored to 12 chromosomes. A total of 33,813 genes were annotated, and repetitive sequences account for 54.24% of the MT10 genome. The number of unique genes in MT10 exceeds that in the O. officinalis genome from Thailand, and their divergence time is estimated at 1.6 million years ago. The MT10 genome exhibits fewer expanded gene families compared to contracted ones, with the expanded families predominantly associated with disease and pest resistance. Comparative genomic analysis of MT10 and Nipponbare reveals sequence variations in biotic and abiotic resistance-related genes. In particular, the presence of R genes and cystatin gene families in MT10 may contribute to its unique insect resistance. Transcriptome analyses indicate that flavonoid biosynthesis and MAPK-related genes are expressed in response to brown planthopper infestation. This study represents the first chromosome-level genome assembly of MT10, providing a reference sequence for the efficient cloning of beneficial genes from O. officinalis, which holds significant potential for the genetic improvement of cultivated rice.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"15"},"PeriodicalIF":4.8,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11906960/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143625829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"OsPRDA1 Interacts With OsFSD2 To Promote Chloroplast Development by Regulating Chloroplast Gene Expression in Rice.","authors":"Chao Zhang, Lengjing Wang, Zirui Wang, Qiang Dai, Haiyang Feng, Shu Xu, Xueju Liu, Jiaqi Tang, Hengxiu Yu","doi":"10.1186/s12284-025-00771-x","DOIUrl":"10.1186/s12284-025-00771-x","url":null,"abstract":"<p><p>Chloroplasts are vital for photosynthesis, and their development necessitates proper expression of chloroplast genes. However, the regulatory mechanisms underlying rice chloroplast gene expression have not been fully elucidated. In this study, we obtained an albino mutant of rice, white seedling and lethal 1 (wsl1), which displays significantly decreased chlorophyll contents and impaired chloroplast ultrastructure. The causal gene Oryza sativa PEP-RELATED DEVELOPMENT ARRESTED 1 (OsPRDA1) was isolated using Mutmap + and verified by gene editing and complementary assays. The expression of OsPRDA1 is induced by light, and OsPRDA1 is localized in chloroplasts. Transcription sequencing revealed that genes related to photosynthesis were differentially expressed in wsl1. The expression levels of the examined plastid-encoded RNA polymerase (PEP)-dependent chloroplast genes are downregulated due to the mutation of OsPRDA1. Moreover, OsPRDA1 interacts with OsFSD2, a member of PEP-associated proteins (PAPs). Knockout of OsFSD2 leads to the albino and seedling-lethal phenotype and downregulation of PEP-dependent chloroplast genes. Together, our results demonstrated that OsPRDA1 plays essential roles in rice chloroplast development, probably by facilitating the function of the PAP complex and chloroplast gene expression.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"14"},"PeriodicalIF":4.8,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11896912/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143606191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RicePub Date : 2025-03-11DOI: 10.1186/s12284-025-00770-y
Lei Chen, Weiwei Chen, Jin Li, Yu Wei, Dongjin Qing, Juan Huang, Xinghai Yang, Maoyan Tang, Zhanying Zhang, Jianping Yu, Guofu Deng, Gaoxing Dai, Chao Chen, Tianfeng Liang, Yinghua Pan
{"title":"Identifying Heat Adaptability QTLs and Candidate Genes for Grain Appearance Quality at the Flowering Stage in Rice.","authors":"Lei Chen, Weiwei Chen, Jin Li, Yu Wei, Dongjin Qing, Juan Huang, Xinghai Yang, Maoyan Tang, Zhanying Zhang, Jianping Yu, Guofu Deng, Gaoxing Dai, Chao Chen, Tianfeng Liang, Yinghua Pan","doi":"10.1186/s12284-025-00770-y","DOIUrl":"10.1186/s12284-025-00770-y","url":null,"abstract":"<p><p>High temperature significantly impacts grain appearance quality, yet few studies have focused on identifying new quantitative trait loci (QTLs)/genes related to these traits under heat stress during the flowering stage in rice. In this study, a natural population of 525 rice accessions was used to identify QTLs and candidate genes associated with grain appearance quality using a Genome-Wide Association Study under heat stress. We identified 25 QTLs associated with grain length (GL), grain width (GW), and grain chalkiness (GC) under heat stress across 10 chromosomes in the three rice populations (full, indica, and japonica). Notably, three sets of overlapping QTLs were identified (set 1: qHTT-L3 and qHTT-XL3; set 2: qHTT-C5 and qHTT-XC5; set 3: qHTT-L11.1 and qHTT-GL11), located on chromosomes 3, 5, and 11, respectively. Haplotype analysis indicated that Hap1 is the superior haplotype, and pyramiding more than two superior alleles improved rice grain appearance quality (longer GL, wider GW, and lower GC) in high-temperature environments. Based on RNA-seq, qRT-PCR and functional annotations analysis, LOC_Os05g06920, LOC_Os05g06970, and LOC_Os11g28104 were highly expressed, identifying them as the high-priority candidate genes for QTLs linked to grain appearance quality (GL, GW, and GC) under heat stress. Expression analysis revealed that LOC_Os05g06920, which encodes a relA-SpoT-like protein RSH4, and LOC_Os11g28104, which encodes a protein kinase with a DUF26 domain, were highly expressed in seeds, leaves, and shoots. And LOC_Os05g06970, encoding a peroxidase precursor, exhibited high expression levels in roots. Compared to the wild-type (WT) plants, the mutants of LOC_Os05g06920, LOC_Os05g06970, and LOC_Os11g28104 exhibited increased GL and grain length-to-width ratio, but reduced GW under both natural and heat stress conditions, while the LOC_Os05g06970 and LOC_Os11g28104 mutants significantly increased the chalky grain rate and grain chalkiness degree under natural conditions. Furthermore, the LOC_Os05g06920, LOC_Os05g06970, and LOC_Os11g28104 mutants showed a lower decline in grain appearance quality traits than the WT after high-temperature treatment. These findings suggest that LOC_Os05g06920, LOC_Os05g06970, and LOC_Os11g28104 play crucial roles in regulating both grain development and heat tolerance under heat stress at anthesis, thus affecting grain appearance quality in rice. Our results provide a promising genetic resource for improving rice grain appearance quality under heat stress.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"13"},"PeriodicalIF":4.8,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11896946/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143606042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"OsCBL1 Modulates the Nitrate-Induced Phosphate Response by Altering OsNLP4 Cytoplasmic-Nucleus Shuttling.","authors":"Zhao Hu, Yunting Tang, Suping Ying, Jiawei Niu, Ting Wang, Huaiyi Zhu, Xiaojue Peng","doi":"10.1186/s12284-025-00768-6","DOIUrl":"10.1186/s12284-025-00768-6","url":null,"abstract":"<p><p>Nitrate can directly activate phosphate (Pi) starvation signaling, ultimately promoting plant growth by enhancing phosphorus absorption and utilization and optimizing the balance of nitrogen and phosphorus nutrients. However, the complex mechanisms by which plants integrate complex nutrient signals from nitrogen to phosphorus are not well understood. This study highlights the importance of Calcineurin B-like protein-1 (OsCBL1), a calcium sensor, in coordinating nitrogen and phosphorus signaling in rice. Knockdown of OsCBL1 in rice reduced the expression of genes involved in nitrate-induced Pi starvation responses. In high nitrate conditions, OsCBL1-KD plants displayed diminished biomass gain, unlike the wild-type rice, which thrived under elevated phosphate levels. In OsCBL1-KD plants, OsSPX4, a key repressor in nitrogen and phosphorus signaling, remains undegraded in the presence of nitrate due to the significantly reduced expression of OsNRT1.1B. Moreover, the OsCBL1 knockdown hampers the movement of the nitrogen-related transcription factor, OsNLP4, from the cytoplasm to the nucleus when nitrate is present. This impedes the expression of OsNRT1.1B, as OsNLP4 can directly bind to the promoter of OsNRT1.1B nitrate responsive cis-element (NRE) and activate its expression. In summary, these findings suggest that OsCBL1 plays a pivotal role in regulating OsNRT1.1B expression by managing the transport of OsNLP4 between cytoplasm and nucleus in response to nitrate availability. This regulation subsequently influences the phosphate response triggered by nitrate and optimizes the coordinated utilization of nitrogen and phosphorus.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"11"},"PeriodicalIF":4.8,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891122/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143586607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RicePub Date : 2025-03-10DOI: 10.1186/s12284-025-00763-x
Wenjing Zhao, Junli Wen, Juan Zhao, Linlin Liu, Mei Wang, Menghan Huang, Chaowei Fang, Qingpo Liu
{"title":"E3 Ubiquitin Ligase OsRFI2 Regulates Salinity Tolerance by Targeting Ascorbate Peroxidase OsAPX8 for its Degradation in Rice.","authors":"Wenjing Zhao, Junli Wen, Juan Zhao, Linlin Liu, Mei Wang, Menghan Huang, Chaowei Fang, Qingpo Liu","doi":"10.1186/s12284-025-00763-x","DOIUrl":"10.1186/s12284-025-00763-x","url":null,"abstract":"<p><p>Salinity is a major abiotic stress that adversely affects rice growth and production. However, the detailed regulatory mechanisms of salt stress response in rice remain largely unexplored. In this study, we established that the RING-type E3 ubiquitin ligase OsRFI2 plays a negative role in salt tolerance in rice. Knockout mutants of OsRFI2 (Osrfi2) exhibited high tolerance, whereas OsRFI2-overexpressed transgenic lines (OE-OsRFI2) were more sensitive to salt stress. OsRFI2 that has E3 ligase activity interacts with ascorbate peroxidase OsAPX8 in chloroplast, and catalyzes its ubiquitination and degradation through the 26 S proteasome pathway. The Osapx8 mutants, like OE-OsRFI2 lines, showed high sensitivity to high salt concentrations, accumulating greater amounts of MDA, H<sub>2</sub>O<sub>2</sub> and O<sub>2</sub><sup>-</sup>, which lead to compromised cell permeability and ROS accumulation. Thus, the OsRFI2-OsAPX8 module adds novel clues for better understanding the regulatory mechanism of salt stress response in rice.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"12"},"PeriodicalIF":4.8,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891124/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143586605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RicePub Date : 2025-03-08DOI: 10.1186/s12284-025-00765-9
Chenghang Tang, Di Bai, Xingmeng Wang, Guohui Dou, Jiaqi Lv, Yaling Bao, Nansheng Wang, Linjun Yu, You Zhou, Jinguo Zhang, Dezhuang Meng, Jun Zhu, Yingyao Shi
{"title":"Identification of Candidate Genes for Hypoxia Tolerance in Rice by Genome-Wide Association Analysis and Transcriptome Sequencing.","authors":"Chenghang Tang, Di Bai, Xingmeng Wang, Guohui Dou, Jiaqi Lv, Yaling Bao, Nansheng Wang, Linjun Yu, You Zhou, Jinguo Zhang, Dezhuang Meng, Jun Zhu, Yingyao Shi","doi":"10.1186/s12284-025-00765-9","DOIUrl":"10.1186/s12284-025-00765-9","url":null,"abstract":"<p><p>Direct-seeded rice has gained increasing popularity due to its advantage of lower labor costs. Flooding/hypoxia is an important abiotic stress with severe negative impacts on the germination and emergence of direct-seeded rice. Hence, improving the hypoxic germination tolerance of rice is an important way to promote the further development of direct-seeded rice. In this study, 276 rice germplasms were used as materials to analyze the correlation traits of hypoxia tolerance in rice by genome-wide association analysis (GWAS). In addition, transcriptome sequencing was performed on the strong and weak hypoxic tolerance varieties under flooding and normal conditions. By comparing the results of GWAS and transcriptome sequencing, the candidate genes were further screened and analyzed.As a result, a total of 86 genes related to hypoxic germination tolerance were detected by GWAS, and 51 genes were mapped by GWAS and transcriptome sequencing. Combined with gene functional annotation and haplotype analysis, five important candidate genes related to hypoxia tolerance were screened, including LOC_Os01g07420, LOC_Os02g01890, LOC_Os03g45720, LOC_Os04g56920, and LOC_Os11g41680. The findings may provide an important foundation for mining and cloning of genes for hypoxic germination tolerance in rice with biotechnological improvement.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"10"},"PeriodicalIF":4.8,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889329/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143586606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RicePub Date : 2025-02-25DOI: 10.1186/s12284-025-00762-y
Dan Wang, Hongde An, Mingyue Wang, Xinyu Fu, Wen Liu
{"title":"OsJAZ10 Modulates Metabolite Profiles in Rice Seedlings in Response to Alkaline Stress.","authors":"Dan Wang, Hongde An, Mingyue Wang, Xinyu Fu, Wen Liu","doi":"10.1186/s12284-025-00762-y","DOIUrl":"10.1186/s12284-025-00762-y","url":null,"abstract":"<p><p>The jasmonate ZIM-domain (JAZ) proteins, known as inhibitors in the jasmonic acid (JA) pathway, have been reported to play a protective role against abiotic stress in plants. Nevertheless, the specific role of JAZ proteins in rice seedlings under alkaline stress remains unexplored. In this study, we mainly focus on OsJAZ10, investigating the physiological response mechanism and metabolic regulation on rice seedlings challenged by alkaline stress. Our results revealed that the antioxidant enzyme activity and osmotic adjustment ability of the OsJAZ10 overexpression lines were less affected by alkaline stress compared to WT (Wild-type) line. Metabolomic analysis demonstrated a significant accumulation of organic acids, including citrate and DL-malate, as well as amino acids such as DL-serine, DL-glutamine, threonine, glycine, and L-glutamate, in the OsJAZ10 overexpression plants in response to alkaline stress. Besides, OsJAZ10 was also involved in pantothenate and CoA biosynthesis, carbon fixation, and C5-branched dibasic acid metabolism in response to alkaline stress. Finally, OsJAZ10 was found to negatively regulated the biosynthesis and signaling of jasmonic acid pathway by repressing JA-responsive genes. Overall, this research elucidates the role of OsJAZ10 in conferring enhanced tolerance to alkaline stress in rice, providing valuable insights for the development of stress-tolerant rice varieties.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"9"},"PeriodicalIF":4.8,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11861492/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143503666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RicePub Date : 2025-02-22DOI: 10.1186/s12284-025-00764-w
Nan Ruan, Hai Xu, Kaixuan Chen, Fuhao Tian, Deyuan Gao, Zihan Wang, Xiao Yang, Xia Yan, Ye Wang, Meihan Wang, Zhengjun Dang, Xuelin Yin, Yijun Tang, Quan Xu, Fengcheng Li, Wenfu Chen
{"title":"CYP75B4-Mediated Tricin and Lignin Accumulation Improve Salt Tolerance in Rice.","authors":"Nan Ruan, Hai Xu, Kaixuan Chen, Fuhao Tian, Deyuan Gao, Zihan Wang, Xiao Yang, Xia Yan, Ye Wang, Meihan Wang, Zhengjun Dang, Xuelin Yin, Yijun Tang, Quan Xu, Fengcheng Li, Wenfu Chen","doi":"10.1186/s12284-025-00764-w","DOIUrl":"10.1186/s12284-025-00764-w","url":null,"abstract":"<p><p>Salt stress limits plant growth and agricultural productivity and plants have evolved suitable mechanisms to adapt to salinity environments. It is important to characterize genes involved in plant salt tolerance, which will advance our understanding of mechanisms mediating salt tolerance and help researchers design ways to improve crop performances under high salinity environments. Here, we reported a CYP450 family member, CYP75B4, improves salt tolerance of rice seedlings by inducing flavonoid tricin and cell wall lignin accumulation. The CYP75B4 is highly expressed in tissues rich in cell walls and induced by salt treatment. Subcellular localization analysis revealed that CYP75B4 is localized in the endoplasmic reticulum (ER). The CYP75B4 overexpressing (CYP75B4-OE) lines showed significant enhancement in stem mechanical strength, whereas the cyp75b4 null mutants displayed weaker stems, as compared to the wild-type. Notably, the cyp75b4 and CYP75B4-OE lines showed decreased and improved, respectively, salt tolerance performances in terms of survival rate, ROS accumulation, and Na<sup>+</sup>/ K<sup>+</sup> homeostasis. Additionally, the cyp75b4 mutants had a decreased tricin level, whereas CYP75B4-OE lines showed an increased tricin content, under both control or salinity conditions. Furthermore, treating the cyp75b4 mutants with tricin partly resorted salt stress tolerance to the wild-type levels, indicating a role of CYP75B4-mediated tricin production in rice response to salinity. Consistently, another tricin-deficient mutant cyp93g1 also displayed salt sensitivity and the tricin application could partly restore its salt-sensitive phenotypes. Moreover, the CYP75B4 significantly promotes lignin deposition in cell walls of mature stems and seedlings under salinity conditions, which probably contributes to the enhanced stem mechanical strength and improved salt tolerance in CYP75B4-OE plants. Our findings reveal a novel function of CYP75B4 in rice salt tolerance and lodging resistance by inducing tricin accumulation and lignin deposition in cell walls.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"8"},"PeriodicalIF":4.8,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846809/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143476718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}