RNA适体靶向eIF4A通过翻译起始调控提高水稻耐盐性

IF 4.8 1区 农林科学 Q1 AGRONOMY
Rice Pub Date : 2025-07-07 DOI:10.1186/s12284-025-00819-y
Haomin Chen, Zhihao Xie, Mingming Chen, Peiyi Zhu, Daming Chen, Yongxiang Huang, Shuangfeng Dai
{"title":"RNA适体靶向eIF4A通过翻译起始调控提高水稻耐盐性","authors":"Haomin Chen, Zhihao Xie, Mingming Chen, Peiyi Zhu, Daming Chen, Yongxiang Huang, Shuangfeng Dai","doi":"10.1186/s12284-025-00819-y","DOIUrl":null,"url":null,"abstract":"<p><p>Salt stress is a major limiting factor for rice productivity worldwide, and improving salt tolerance is crucial for ensuring sustainable agricultural production. In this study, we investigate the use of RNA aptamers to modulate eukaryotic initiation factor 4 A (eIF4A), a key regulator of translation initiation under stress conditions, to enhance salt stress tolerance in rice (Oryza sativa). Using Systematic Evolution of Ligands by EXponential enrichment (SELEX), we isolated high-affinity RNA aptamers that specifically bind to eIF4A. One aptamer, eApt-2, was found to bind eIF4A with high affinity, selectively blocking cap-dependent translation initiation. Radioisotope‑based helicase assays confirmed that eApt‑2 does not impair eIF4A's intrinsic RNA‑unwinding activity. Transfected rice expressing eApt-2 exhibited enhanced salt stress tolerance, with improved growth, biomass accumulation, and photosynthetic activity under saline conditions. Moreover, stable transgenic rice lines expressing eApt‑2 maintained enhanced growth and biomass accumulation under 150 mM NaCl stress, mirroring transient expression results, and transgenic Arabidopsis lines showed similar tolerance. Our results demonstrate the potential of RNA aptamers as a precise, reversible tool for enhancing stress resilience in crops, offering an alternative to conventional genetic modification methods. This study opens new avenues for engineering salt-tolerant rice and highlights the broader applicability of RNA aptamers in improving plant responses to abiotic stresses.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"62"},"PeriodicalIF":4.8000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12234956/pdf/","citationCount":"0","resultStr":"{\"title\":\"Targeting eIF4A with RNA Aptamers Enhances Salt Stress Tolerance in Rice Through Modulation of Translation Initiation.\",\"authors\":\"Haomin Chen, Zhihao Xie, Mingming Chen, Peiyi Zhu, Daming Chen, Yongxiang Huang, Shuangfeng Dai\",\"doi\":\"10.1186/s12284-025-00819-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Salt stress is a major limiting factor for rice productivity worldwide, and improving salt tolerance is crucial for ensuring sustainable agricultural production. In this study, we investigate the use of RNA aptamers to modulate eukaryotic initiation factor 4 A (eIF4A), a key regulator of translation initiation under stress conditions, to enhance salt stress tolerance in rice (Oryza sativa). Using Systematic Evolution of Ligands by EXponential enrichment (SELEX), we isolated high-affinity RNA aptamers that specifically bind to eIF4A. One aptamer, eApt-2, was found to bind eIF4A with high affinity, selectively blocking cap-dependent translation initiation. Radioisotope‑based helicase assays confirmed that eApt‑2 does not impair eIF4A's intrinsic RNA‑unwinding activity. Transfected rice expressing eApt-2 exhibited enhanced salt stress tolerance, with improved growth, biomass accumulation, and photosynthetic activity under saline conditions. Moreover, stable transgenic rice lines expressing eApt‑2 maintained enhanced growth and biomass accumulation under 150 mM NaCl stress, mirroring transient expression results, and transgenic Arabidopsis lines showed similar tolerance. Our results demonstrate the potential of RNA aptamers as a precise, reversible tool for enhancing stress resilience in crops, offering an alternative to conventional genetic modification methods. This study opens new avenues for engineering salt-tolerant rice and highlights the broader applicability of RNA aptamers in improving plant responses to abiotic stresses.</p>\",\"PeriodicalId\":21408,\"journal\":{\"name\":\"Rice\",\"volume\":\"18 1\",\"pages\":\"62\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12234956/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rice\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1186/s12284-025-00819-y\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rice","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s12284-025-00819-y","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

盐胁迫是全球水稻生产力的主要限制因素,提高耐盐性对确保可持续农业生产至关重要。在这项研究中,我们研究了RNA适体对真核起始因子4a (eIF4A)的调节作用,该因子是胁迫条件下翻译起始的关键调节因子,以提高水稻(Oryza sativa)的耐盐性。利用指数富集系统进化配体(SELEX),我们分离出特异性结合eIF4A的高亲和力RNA适体。其中一个适体eApt-2被发现高亲和力地结合eIF4A,选择性地阻断帽依赖性翻译起始。基于放射性同位素的解旋酶测定证实,eApt‑2不会损害eIF4A固有的RNA解绕活性。转染表达eApt-2的水稻表现出更强的盐胁迫耐受性,在盐水条件下生长、生物量积累和光合活性都有所改善。此外,表达eApt‑2的稳定转基因水稻品系在150 mM NaCl胁迫下保持了增强的生长和生物量积累,反映了瞬时表达结果,转基因拟南芥品系也表现出类似的耐受性。我们的研究结果证明了RNA适体作为一种精确的、可逆的增强作物抗逆性的工具的潜力,为传统的转基因方法提供了一种替代方法。该研究为水稻耐盐工程开辟了新的途径,并强调了RNA适体在改善植物对非生物胁迫的反应方面的广泛适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Targeting eIF4A with RNA Aptamers Enhances Salt Stress Tolerance in Rice Through Modulation of Translation Initiation.

Salt stress is a major limiting factor for rice productivity worldwide, and improving salt tolerance is crucial for ensuring sustainable agricultural production. In this study, we investigate the use of RNA aptamers to modulate eukaryotic initiation factor 4 A (eIF4A), a key regulator of translation initiation under stress conditions, to enhance salt stress tolerance in rice (Oryza sativa). Using Systematic Evolution of Ligands by EXponential enrichment (SELEX), we isolated high-affinity RNA aptamers that specifically bind to eIF4A. One aptamer, eApt-2, was found to bind eIF4A with high affinity, selectively blocking cap-dependent translation initiation. Radioisotope‑based helicase assays confirmed that eApt‑2 does not impair eIF4A's intrinsic RNA‑unwinding activity. Transfected rice expressing eApt-2 exhibited enhanced salt stress tolerance, with improved growth, biomass accumulation, and photosynthetic activity under saline conditions. Moreover, stable transgenic rice lines expressing eApt‑2 maintained enhanced growth and biomass accumulation under 150 mM NaCl stress, mirroring transient expression results, and transgenic Arabidopsis lines showed similar tolerance. Our results demonstrate the potential of RNA aptamers as a precise, reversible tool for enhancing stress resilience in crops, offering an alternative to conventional genetic modification methods. This study opens new avenues for engineering salt-tolerant rice and highlights the broader applicability of RNA aptamers in improving plant responses to abiotic stresses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rice
Rice AGRONOMY-
CiteScore
10.10
自引率
3.60%
发文量
60
审稿时长
>12 weeks
期刊介绍: Rice aims to fill a glaring void in basic and applied plant science journal publishing. This journal is the world''s only high-quality serial publication for reporting current advances in rice genetics, structural and functional genomics, comparative genomics, molecular biology and physiology, molecular breeding and comparative biology. Rice welcomes review articles and original papers in all of the aforementioned areas and serves as the primary source of newly published information for researchers and students in rice and related research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信