Molecular Nutrition & Food Research最新文献

筛选
英文 中文
Issue Information: Mol. Nutr. Food Res. 20'24 发行信息:Mol.Nutr.20'24
IF 4.5 2区 农林科学
Molecular Nutrition & Food Research Pub Date : 2024-10-25 DOI: 10.1002/mnfr.202470033
{"title":"Issue Information: Mol. Nutr. Food Res. 20'24","authors":"","doi":"10.1002/mnfr.202470033","DOIUrl":"10.1002/mnfr.202470033","url":null,"abstract":"","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 20","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mnfr.202470033","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142490791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Micronutrients and Androgenetic Alopecia: A Systematic Review 微量营养素与雄激素性脱发:系统综述。
IF 4.5 2区 农林科学
Molecular Nutrition & Food Research Pub Date : 2024-10-23 DOI: 10.1002/mnfr.202400652
Ruilong Wang, Jinran Lin, Qingmei Liu, Wenyu Wu, Jinfeng Wu, Xiao Liu
{"title":"Micronutrients and Androgenetic Alopecia: A Systematic Review","authors":"Ruilong Wang,&nbsp;Jinran Lin,&nbsp;Qingmei Liu,&nbsp;Wenyu Wu,&nbsp;Jinfeng Wu,&nbsp;Xiao Liu","doi":"10.1002/mnfr.202400652","DOIUrl":"10.1002/mnfr.202400652","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <h3> Scope</h3>\u0000 \u0000 <p>Hair loss is a common problem that can negatively impact individuals' psychological well-being. Androgenetic alopecia (AGA) is one of the most prevalent types of nonscarring hair loss. This review summarizes the existing evidence on the relationship between AGA and various micronutrients, including vitamin B, vitamin D, vitamin A, vitamin C, iron, selenium, zinc, manganese, and copper.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>A literature search was conducted to identify relevant articles published between 1993 and 2023. The search identified 49 relevant articles.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>The findings suggest that deficiencies or imbalances in these micronutrients may contribute to the pathogenesis of AGA and represent modifiable risk factors for hair loss prevention and treatment. Vitamin B, vitamin D, iron, and zinc appear to play critical roles in hair growth and maintenance. Deficiencies in these micronutrients have been associated with increased risk of AGA, while supplementation with these nutrients has shown potential benefits in improving hair growth and preventing hair loss. However, the current evidence is not entirely consistent, with some studies reporting no significant associations.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>Deficiencies or imbalances in specific vitamins and minerals, especially vitamin B, vitamin D, Fe, Se, and Zn are involved in the pathogenesis of AGA and may represent modifiable risk factors for the treatment and prevention of this condition.</p>\u0000 </section>\u0000 </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 22","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Yeast Extract Peptides Alleviate Depression in Chronic Restraint Stress Rats by Alleviating Hippocampal Neuronal Apoptosis and Dysbiosis of the Gut Microbiota 酵母提取物肽通过缓解海马神经元凋亡和肠道微生物群失调减轻慢性束缚应激大鼠的抑郁情绪
IF 4.5 2区 农林科学
Molecular Nutrition & Food Research Pub Date : 2024-10-21 DOI: 10.1002/mnfr.202300467
Zebin Zou, Nan Xiao, Zhixian Chen, Xucong Lin, Yaqi Li, Pan Li, Qian Cheng, Bing Du
{"title":"Yeast Extract Peptides Alleviate Depression in Chronic Restraint Stress Rats by Alleviating Hippocampal Neuronal Apoptosis and Dysbiosis of the Gut Microbiota","authors":"Zebin Zou,&nbsp;Nan Xiao,&nbsp;Zhixian Chen,&nbsp;Xucong Lin,&nbsp;Yaqi Li,&nbsp;Pan Li,&nbsp;Qian Cheng,&nbsp;Bing Du","doi":"10.1002/mnfr.202300467","DOIUrl":"10.1002/mnfr.202300467","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <h3> Scope</h3>\u0000 \u0000 <p>Depression as a global neurological disorder, and hippocampal neuronal apoptosis and disorders of the gut microbiota are closely related to it. This study aims to expose the ameliorative effect of enzyme peptides (AP) from brewer's yeast on depressive behavior caused by chronic restraint stress (CRS) in rats.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and results</h3>\u0000 \u0000 <p>After 4 weeks of AP intervention, a significant alleviation of depressive behavior in the sucrose preference test (SPT), forced swim test (FST), and light-dark test (LDT) is observed in depressed rats. AP ameliorates neuronal damage with increased the expression of the key CREB/BDNF/TrkB/Akt signaling pathway, which increases the levels of the monoamine neurotransmitters 5-hydroxytryptamine (5-HT) and norepinephrine (NE) in the hippocampus, buffering hyperactivity of the hypothalamo-pituitary-adrenal axis (HPA), and decreasing the serum cortisol (CORT) and adrenocorticotropic hormone (ACTH) levels in rats. In addition, AP modulates the disruption of the rat gut microbiota by chronic restraint stress (CRS), and the changes in the abundance of <i>Lactobacillus animalis</i> and <i>Lactobacillus johnsonii</i> are probably the key for AP performing antidepressant benefits. A strong correlation is found between gut microbiota and biochemical markers of depression.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>AP, as a natural and safe active substance, has a positive effect in the treatment of depression.</p>\u0000 </section>\u0000 </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 21","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acylated Anthocyanins From Black Carrots and Their Related Phenolic Acids Diminish Priming and Activation of the NLRP3 Inflammasome in THP-1 Monocytes 黑胡萝卜中的酰化花青素及其相关酚酸可降低 THP-1 单核细胞中 NLRP3 炎症体的激发和激活作用
IF 4.5 2区 农林科学
Molecular Nutrition & Food Research Pub Date : 2024-10-19 DOI: 10.1002/mnfr.202400356
Inken Behrendt, Katharina Becker, Christof Björn Steingass, Ralf Schweiggert, Gabriela Michel, Elvira Friedrich, Daniela Grote, Zoe Martin, Hanna Pauline Dötzer, Mathias Fasshauer, Martin Speckmann, Sabine Kuntz
{"title":"Acylated Anthocyanins From Black Carrots and Their Related Phenolic Acids Diminish Priming and Activation of the NLRP3 Inflammasome in THP-1 Monocytes","authors":"Inken Behrendt,&nbsp;Katharina Becker,&nbsp;Christof Björn Steingass,&nbsp;Ralf Schweiggert,&nbsp;Gabriela Michel,&nbsp;Elvira Friedrich,&nbsp;Daniela Grote,&nbsp;Zoe Martin,&nbsp;Hanna Pauline Dötzer,&nbsp;Mathias Fasshauer,&nbsp;Martin Speckmann,&nbsp;Sabine Kuntz","doi":"10.1002/mnfr.202400356","DOIUrl":"10.1002/mnfr.202400356","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <h3> Scope</h3>\u0000 \u0000 <p>Excessive activation of the nucleotide-binding oligomerization domain-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome contributes to chronic inflammation. Thus, targeting NLRP3 inflammasome activation by anthocyanins may prevent inflammatory diseases. Therefore, the present study determines the influence of a black carrot extract (BCE) with high amounts of acylated anthocyanins and their related phenolic acids on the NLRP3 inflammasome.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and results</h3>\u0000 \u0000 <p>THP-1 monocytes are pretreated with a BCE, cyanidin-3-glucoside (C3G), or hydroxycinnamic acids. NLRP3 inflammasome assembly is initiated by priming THP-1 monocytes with lipopolysaccharide and/or activating the NLRP3 inflammasome with nigericin. Flow cytometry is used to assess apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) speck formation, as well as ASC and NLRP3 protein expression. Caspase-1 activity is measured using a bioluminescent assay, and cytokine concentrations are determined by enzyme-linked immunosorbent assays (ELISA). C3G and phenolic acids diminish ASC and NLRP3 protein expression. In addition, C3G and phenolic acids attenuate ASC speck formation. Furthermore, the BCE and C3G decline caspase-1 activity. Consistently, IL-1β and IL-18 secretion are reduced upon NLRP3 inflammasome activation.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>The present study shows that a BCE with high amounts of acylated anthocyanins and their related phenolic acids diminish priming and activation of the NLRP3 inflammasome in THP-1 monocytes.</p>\u0000 </section>\u0000 </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 22","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mnfr.202400356","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maternal Broccoli Powder Intake Ameliorates Insulin Resistance and Inflammation via AMPK/mTOR Pathway in the Livers of High-Fructose-Fed Male Rat Offspring Exposed to Maternal Protein Restriction 母体摄入西兰花粉能通过AMPK/mTOR通路改善暴露于母体蛋白质限制的高果糖雄性大鼠后代肝脏中的胰岛素抵抗和炎症。
IF 4.5 2区 农林科学
Molecular Nutrition & Food Research Pub Date : 2024-10-17 DOI: 10.1002/mnfr.202400472
Anishma Karmacharya, Shiho Kasai, Yuuka Mukai, Shin Sato
{"title":"Maternal Broccoli Powder Intake Ameliorates Insulin Resistance and Inflammation via AMPK/mTOR Pathway in the Livers of High-Fructose-Fed Male Rat Offspring Exposed to Maternal Protein Restriction","authors":"Anishma Karmacharya,&nbsp;Shiho Kasai,&nbsp;Yuuka Mukai,&nbsp;Shin Sato","doi":"10.1002/mnfr.202400472","DOIUrl":"10.1002/mnfr.202400472","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <h3> Scope</h3>\u0000 \u0000 <p>Sub-optimal prenatal conditions such as maternal undernutrition during pregnancy and lactation posit high risks of adult metabolic diseases. High fructose intake causes insulin resistance and liver inflammation contributing to metabolic diseases. However, food-based preventive measure for these metabolic diseases in the offspring is under-researched. This study aims to investigate the effect of maternal broccoli powder (BP) intake during lactation on insulin resistance and liver inflammation in high-fructose-diet-fed adult male offspring exposed to maternal protein restriction.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and results</h3>\u0000 \u0000 <p>Pregnant Wistar rats are provided normal protein (NP) or low protein (LP) diets and 0% or 0.74% BP-containing NP diets and 0% or 0.74% BP-containing LP diet during lactation. At weaning, offspring receiving water (W) or 10% fructose solution (Fr) are assigned into six groups: NP/NP/W, NP/NP/Fr, NP/NPBP/Fr, LP/LP/W, LP/LP/Fr, and LP/LPBP/Fr. At week 13, plasma insulin, macrophage infiltration, activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) phosphorylation, and autophagy flux markers are examined. LP/LPBP/Fr shows lower insulin levels and Homeostatic model assessment for insulin resistance (HOMA-IR) values than LP/LP/Fr. Liver macrophage infiltration are decreased in LP/LPBP/Fr. LP/LPBP/Fr exhibits upregulated AMPK phosphorylation, downregulated mTOR phosphorylation, and increased Microtubule-associated protein1A/1B-light chain 3B-II (LC3B-II) levels.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>Maternal BP intake during lactation ameliorates insulin resistance and inflammation in the livers of adult offspring on a high-fructose diet from LP mothers.</p>\u0000 </section>\u0000 </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 22","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Mix of Probiotic Strains Prevents Hepatic Steatosis, and Improves Oxidative Stress Status and Gut Microbiota Composition in Obese Mice 混合益生菌株可预防肝脏脂肪变性,改善肥胖小鼠的氧化应激状态和肠道微生物群组成
IF 4.5 2区 农林科学
Molecular Nutrition & Food Research Pub Date : 2024-10-17 DOI: 10.1002/mnfr.202300672
Chenglin Guo, Shengduo He, Mélanie Le Barz, Sylvie Binda, Huahong Wang
{"title":"A Mix of Probiotic Strains Prevents Hepatic Steatosis, and Improves Oxidative Stress Status and Gut Microbiota Composition in Obese Mice","authors":"Chenglin Guo,&nbsp;Shengduo He,&nbsp;Mélanie Le Barz,&nbsp;Sylvie Binda,&nbsp;Huahong Wang","doi":"10.1002/mnfr.202300672","DOIUrl":"10.1002/mnfr.202300672","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <h3> Scope</h3>\u0000 \u0000 <p>The gut microbiota plays a role in fat accumulation and energy homeostasis. Therefore, probiotic supplementation may improve metabolic parameters and control body weight.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and results</h3>\u0000 \u0000 <p>In this study, mice are fed either a high-fat diet (HFD) or an HFD supplemented with oral gavage of a mixture of three probiotic strains, <i>Bifidobacterium lactis</i> Lafti B94, <i>Lactobacillus plantarum</i> HA-119, and <i>Lactobacillus helveticus</i> Lafti L10 for 7 weeks. It finds that probiotic supplementation modulates body weight gain, food energy efficiency, and fat accumulation caused by the HFD. This probiotic mix prevents liver damage and lipid metabolic disorders in HFD-fed obese mice. The probiotic supplementation significantly downregulates the expression of the proinflammatory cytokines interleukin-1β, tumor necrosis factor-α, and malondialdehyde (MDA) in the liver and upregulated catalase (CAT), superoxide dismutase (SOD), and nuclear respiratory factor 1 (Nrf1) expression. Mice supplemented with the probiotic mix also show different microbiota compositions, with an increase in <i>Clostridia_UCG-014</i> and <i>Lachnospiraceae_nk4a136_group</i> and a decrease in the <i>Dubosiella</i> genus compared with those in mice fed only an HFD. Finally, the amounts of fecal pentanoic acid and the three bile acid species increase in mice with probiotic supplementation.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>Treatment with a combination of a mixture of three probiotic strains, <i>B. lactis</i> Lafti B94, <i>L. plantarum</i> HA-119, and <i>L. helveticus</i> Lafti L10 for 7 weeks, ameliorates the effects of HFD induced obesity in mice.</p>\u0000 </section>\u0000 </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 21","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nicotinamide Mononucleotide Improves Endometrial Homeostasis in a Rat Model of Polycystic Ovary Syndrome by Decreasing Insulin Resistance and Regulating the Glylytic Pathway 烟酰胺单核苷酸通过降低胰岛素抵抗和调节糖化途径改善多囊卵巢综合征大鼠模型的子宫内膜稳态
IF 4.5 2区 农林科学
Molecular Nutrition & Food Research Pub Date : 2024-10-17 DOI: 10.1002/mnfr.202400340
Wenhui Zhang, Jiaming Zhang, Haoxuan Xue, Xi Chen, Meixiang Li, Shenghua Chen, Zhiling Li, Leonardo Antonio Sechi, Qian Wang, Giampiero Capobianco, Xiaocan Lei
{"title":"Nicotinamide Mononucleotide Improves Endometrial Homeostasis in a Rat Model of Polycystic Ovary Syndrome by Decreasing Insulin Resistance and Regulating the Glylytic Pathway","authors":"Wenhui Zhang,&nbsp;Jiaming Zhang,&nbsp;Haoxuan Xue,&nbsp;Xi Chen,&nbsp;Meixiang Li,&nbsp;Shenghua Chen,&nbsp;Zhiling Li,&nbsp;Leonardo Antonio Sechi,&nbsp;Qian Wang,&nbsp;Giampiero Capobianco,&nbsp;Xiaocan Lei","doi":"10.1002/mnfr.202400340","DOIUrl":"10.1002/mnfr.202400340","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <h3> Scope</h3>\u0000 \u0000 <p>Polycystic ovary syndrome (PCOS) is a common endocrine disorder that can lead to insulin resistance (IR) and dysregulation of glucose metabolism, resulting in an imbalance in the endometrial environment, which is unfavorable for embryo implantation of PCOS. This study aims to investigate whether nicotinamide mononucleotide (NMN) improves the stability of the endometrium in a rat model of PCOS and identifies whether it is related to reduce IR and increase glycolysis levels and its potential signaling pathway.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and results</h3>\u0000 \u0000 <p>Female Sprague-Dawley (SD) rats are fed letrozole and a high-fat diet (HFD) to form the PCOS model, then the model rats are treated with or without NMN. It randomly divided into control, PCOS, and PCOS-NMN groups according to the feeding and treating method. Compared with the PCOS group, the regular estrous cycles are restored, the serum androgen (<i>p</i>&lt;0.01) and fasting insulin levels (<i>p</i>&lt;0.05) are reduced, and endometrial morphology (<i>p</i>&lt;0.05) is improved in NMN-PCOS group. Furthermore, NMN inhibits endometrial cell apoptosis, improves endometrial decidualization transition, reduces IR, restores the expression of glycolysis rate-limiting enzymes, and activates the PI3K/AKT pathway in the uterus.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>These results suggest that NMN enhances endometrial tissue homeostasis by decreasing uterine IR and regulating the glycolysis through the PI3K/AKT pathway.</p>\u0000 </section>\u0000 </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 21","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ruminant Trans Fatty Acid Intake Modulates Inflammation Pathways in the Adipose Tissue Transcriptome of C57BL/6 Mice 反刍动物反式脂肪酸摄入调节 C57BL/6 小鼠脂肪组织转录组中的炎症通路
IF 4.5 2区 农林科学
Molecular Nutrition & Food Research Pub Date : 2024-10-13 DOI: 10.1002/mnfr.202400290
Farzad Mohammadi, Charles Joly Beauparlant, Stéphanie Bianco, Arnaud Droit, Nicolas Bertrand, Iwona Rudkowska
{"title":"Ruminant Trans Fatty Acid Intake Modulates Inflammation Pathways in the Adipose Tissue Transcriptome of C57BL/6 Mice","authors":"Farzad Mohammadi,&nbsp;Charles Joly Beauparlant,&nbsp;Stéphanie Bianco,&nbsp;Arnaud Droit,&nbsp;Nicolas Bertrand,&nbsp;Iwona Rudkowska","doi":"10.1002/mnfr.202400290","DOIUrl":"10.1002/mnfr.202400290","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <h3> Scope</h3>\u0000 \u0000 <p>The study aims to analyze transcriptomic profiles in adipose tissues postconsumption of elaidic acid (EA; <i>trans</i>-18:1<i>n</i>-9) and <i>trans</i>-palmitoleic acid (TPA; <i>trans</i>-16:1<i>n</i>-7), elucidating their different effects on inflammation and glucose metabolism.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and results</h3>\u0000 \u0000 <p>Twenty C57BL/6 mice are divided into four groups. Each group receives one of the following formulations in drinking water: lecithin nanovesicles, nanovesicles containing either lecithin with EA or TPA (86:14 w/w), or water (control) for 28 days with a regular fat diet (18% calories from fat). Total RNA is extracted, and paired-end sequencing is performed. TPA intake alters the expression of 351 genes compared to EA intake, including 11 downregulated and 340 upregulated genes (fold change [FC] &gt;1.5, <i>p</i> &lt; 0.05). TPA compares to EA upregulated: Slc5a8, Lcn2, Csf3, Scube1, Mapk13, Bdkrb2, Ctla2a, Slc2a1, Oas3, Cx3cl1, Oas2, Nlrp6, Pycard, Cyba, Ddr1, and Prkab1 and downregulated Fas gene. These genes are related to the NOD-like receptor, lipid and atherosclerosis, IL-17 signaling, TNF, nonalcoholic fatty liver disease, cytokine–cytokine receptor interaction, adipocytokine, glucagon, insulin resistance, and inflammatory mediator regulation of TRP channels signaling.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>TPA intake has a distinct impact on the regulation of inflammation and diabetes-related pathways in adipose tissue compared to EA.</p>\u0000 </section>\u0000 </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 21","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mnfr.202400290","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Emulsion Lipid Droplet Crystallinity on Postprandial Endotoxin Transporters and Atherogenic And Inflammatory Profiles in Healthy Men – A Randomized Double-Blind Crossover Acute Meal Study 乳状液脂滴结晶度对健康男性餐后内毒素转运体及动脉粥样硬化和炎症特征的影响--一项随机双盲交叉急性进餐研究
IF 4.5 2区 农林科学
Molecular Nutrition & Food Research Pub Date : 2024-10-10 DOI: 10.1002/mnfr.202400365
Erik S. Dassoff, Samar Hamad, Elaina Campagna, Surangi H. Thilakarathna, Marie-Caroline Michalski, Amanda J. Wright
{"title":"Influence of Emulsion Lipid Droplet Crystallinity on Postprandial Endotoxin Transporters and Atherogenic And Inflammatory Profiles in Healthy Men – A Randomized Double-Blind Crossover Acute Meal Study","authors":"Erik S. Dassoff,&nbsp;Samar Hamad,&nbsp;Elaina Campagna,&nbsp;Surangi H. Thilakarathna,&nbsp;Marie-Caroline Michalski,&nbsp;Amanda J. Wright","doi":"10.1002/mnfr.202400365","DOIUrl":"10.1002/mnfr.202400365","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <h3> Scope</h3>\u0000 \u0000 <p>Consumption of high-fat meals is associated with increased endotoxemia, inflammation, and atherogenic profiles, with repeated postprandial responses suggested as contributors to chronically elevated risk factors. However, effects of lipid solid versus liquid state specifically have not been investigated.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and results</h3>\u0000 \u0000 <p>This exploratory randomized crossover study tests the impact of lipid crystallinity on plasma levels of endotoxin transporters (lipopolysaccharide [LPS] binding protein [LBP] and soluble cluster of differentiation 14 [sCD14]) and select proinflammatory and atherogenic markers (tumor necrosis factor-alpha [TNF-α], C-reactive protein [CRP], interleukin-1-beta [IL-1β], interferon-gamma [IFN-γ], interleukin-6 [IL-6], soluble intercellular adhesion molecule [sICAM], soluble vascular cell adhesion molecule [sVCAM], monocyte chemoattractant protein-1 [MCP-1/CCL2], plasminogen activator inhibitor-1 [PAI-1], and fibrinogen). Fasted healthy men (<i>n</i> = 14, 28 ± 5.5 years, 24.1 ± 2.6 kg m<sup>−2</sup>) consumed two 50 g palm stearin oil-in-water emulsions tempered to contain either liquid or crystalline lipid droplets at 37 °C on separate occasions with blood sampling at 0, 2-, 4-, and 6-h post-meal. Timepoint data, area under the curve, and peak concentration values are compared. Overall, no treatment effects are seen (<i>p</i> &gt; 0.05). There are significant effects of time, with values decreasing from baseline, for TNF-α, MCP-1/CCL2, PAI-1, and fibrinogen (<i>p</i> &lt; 0.05).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>Responder analysis pointed to differential treatment effects associated with some participant baseline characteristics but, overall, palm-stearin emulsion droplet crystallinity does not acutely affect plasma endotoxin transporters nor select inflammatory and atherogenic markers.</p>\u0000 </section>\u0000 </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 21","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mnfr.202400365","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142398567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hypoglycemic Effect of Rambutan (Nephelium lappaceum L.) Peel Polyphenols on Type 2 Diabetes Mice by Modulating Gut Microbiota and Metabolites 红毛丹(Nephelium lappaceum L.)果皮多酚通过调节肠道微生物群和代谢物对 2 型糖尿病小鼠的降血糖作用
IF 4.5 2区 农林科学
Molecular Nutrition & Food Research Pub Date : 2024-10-10 DOI: 10.1002/mnfr.202400555
Qiuming Liu, Qingyu Ma, Jiao Li, Liping Sun, Yongliang Zhuang
{"title":"Hypoglycemic Effect of Rambutan (Nephelium lappaceum L.) Peel Polyphenols on Type 2 Diabetes Mice by Modulating Gut Microbiota and Metabolites","authors":"Qiuming Liu,&nbsp;Qingyu Ma,&nbsp;Jiao Li,&nbsp;Liping Sun,&nbsp;Yongliang Zhuang","doi":"10.1002/mnfr.202400555","DOIUrl":"10.1002/mnfr.202400555","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <h3> Scope</h3>\u0000 \u0000 <p>Type 2 diabetes mellitus (T2DM) is a metabolic disease with a major global public health effect. Rambutan peel polyphenols (RPPs) have been reported to exert hypoglycemic activity. However, few studies have been explored from the viewpoint of gut microbiota and its metabolites.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and results</h3>\u0000 \u0000 <p>RPPs are administered by gavage to a mice model of T2DM established by using a high-fat diet combined with streptozotocin. It finds that RPPs treatment alleviates hyperglycemia symptoms by improving glucolipid metabolism and liver function. Immunohistochemistry indicates that the antihyperglycemic effect of RPPs is regulated by the IRS-1/PI3K/AKT/GSK3β signaling pathway. RPPs treatment remodels the structure of gut microbiota (<i>Odoribacter</i>, <i>Lachnospiraceae_NK4A136_group</i>, <i>Lactobacillus</i>, <i>Turicibacter</i>, <i>Erysipelatoclostridium</i>, and <i>Tuzzerella</i>) and enriches the metabolites (RPPs-derived urolithins, short-chain fatty acids, dehydrocholic acid, (+)-catechin, dihydroberberine, pterostilbene, and artesunate) associated with diabetes regulation in T2DM mice. The effects of RPPs in ameliorating glycolipid metabolism disorders are correlated with differential gut microbiota and metabolites.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>The gut microbiota and its metabolites are key targets for the hypoglycemic effects of RPPs.</p>\u0000 </section>\u0000 </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 22","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信