Molecular Nutrition & Food Research最新文献

筛选
英文 中文
Issue Information: Mol. Nutr. Food Res. 22'24 发布信息:Mol. Nutr。Food Res. 22'24
IF 4.5 2区 农林科学
Molecular Nutrition & Food Research Pub Date : 2024-11-29 DOI: 10.1002/mnfr.202470035
{"title":"Issue Information: Mol. Nutr. Food Res. 22'24","authors":"","doi":"10.1002/mnfr.202470035","DOIUrl":"https://doi.org/10.1002/mnfr.202470035","url":null,"abstract":"","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 22","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mnfr.202470035","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Grifola frondosa Polysaccharide Ameliorates Inflammation by Regulating Macrophage Polarization of Liver in Type 2 Diabetes Mellitus Rats 刺五加多糖通过调节 2 型糖尿病大鼠肝脏巨噬细胞的极化来改善炎症反应
IF 4.5 2区 农林科学
Molecular Nutrition & Food Research Pub Date : 2024-11-26 DOI: 10.1002/mnfr.202400392
Pei Zou, Xueyan Li, Liping Wang, Ying She, Chenyang Xiao, Yang Peng, Xu Qian, Peng Luo, Shaofeng Wei
{"title":"Grifola frondosa Polysaccharide Ameliorates Inflammation by Regulating Macrophage Polarization of Liver in Type 2 Diabetes Mellitus Rats","authors":"Pei Zou,&nbsp;Xueyan Li,&nbsp;Liping Wang,&nbsp;Ying She,&nbsp;Chenyang Xiao,&nbsp;Yang Peng,&nbsp;Xu Qian,&nbsp;Peng Luo,&nbsp;Shaofeng Wei","doi":"10.1002/mnfr.202400392","DOIUrl":"10.1002/mnfr.202400392","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <h3> Scope</h3>\u0000 \u0000 <p><i>Grifola frondosa</i> polysaccharide (GFP) has a positive effect in regulating type 2 diabetes mellitus (T2DM), but the understanding of its regulatory mechanism is still limited. Accumulating evidence suggests that hepatic inflammation is crucial in the onset and progression of insulin resistance (IR) and T2DM. However, the question of whether GFP can modulate T2DM via regulating hepatic inflammation and the underlying mechanism has not yet been reported.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and results</h3>\u0000 \u0000 <p>High-fat diet (HFD) fed combined with streptozocin (STZ) injections rat model and Lipopolysaccharides (LPS)-treated bone marrow-derived macrophages (BMDM) model are used. The results showed that GFP intervention reduces weight loss and hyperglycemia symptoms, besides lowers FINS, HOMA-IR, IPGTT-AUC, and IPITT-AUC in T2DM rats. Meanwhile, GFP intervention reduces the secretion level of inflammatory factors and increases the secretion level of anti-inflammatory factors in the liver tissue of T2DM rats. Furthermore, GFP reduces macrophage infiltration in liver tissue, inhibits macrophage M1-type polarization, and promotes M2-type polarization.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>These results suggest that GFP intervention could attenuate the hepatic inflammatory and insulin resistance in T2DM rats by inhibiting hepatic macrophage infiltration and modulating M1/M2 polarization. The findings provide new evidence for GFP in the early prevention and treatment of T2DM.</p>\u0000 </section>\u0000 </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 24","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142713056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tea Polyphenols Reduced Obesity by Modulating Gut Microbiota-SCFAs-Barrier and Inflammation in High-Fat Diet-Induced Mice 茶多酚通过调节高脂饮食诱导小鼠的肠道微生物群-SCFAs-屏障和炎症减轻肥胖症
IF 4.5 2区 农林科学
Molecular Nutrition & Food Research Pub Date : 2024-11-22 DOI: 10.1002/mnfr.202400685
Baoming Tian, Pinjiao Huang, Yizhu Pan, Hong Gu, Kai Yang, Zhengxun Wei, Xiangchun Zhang
{"title":"Tea Polyphenols Reduced Obesity by Modulating Gut Microbiota-SCFAs-Barrier and Inflammation in High-Fat Diet-Induced Mice","authors":"Baoming Tian,&nbsp;Pinjiao Huang,&nbsp;Yizhu Pan,&nbsp;Hong Gu,&nbsp;Kai Yang,&nbsp;Zhengxun Wei,&nbsp;Xiangchun Zhang","doi":"10.1002/mnfr.202400685","DOIUrl":"10.1002/mnfr.202400685","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <h3> Scope</h3>\u0000 \u0000 <p>Obesity by high-fat diets (HFDs) is a chronic metabolic disorder that poses a significant threat to human health. Tea polyphenols (TPs) can prevent obesity caused by HFD by modulating gut microbiota.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and results</h3>\u0000 \u0000 <p>To explore the function of TP in mitigating the effects of obesity and inflammation, mice are fed HFDs either with or without TP. TP supplementation effectively attenuates HFD-induced weight gain, liver and adipose tissue accumulation, while also improving liver fat content as well as colon and ileum tissue morphology. TP supplementation leads to a downregulation of lipid accumulation genes and an upregulation of lipid-decomposition genes. Moreover, TP increases <i>Blautia</i> and <i>Faecalibaculum</i> while reducing the <i>Colidextribacter</i> and short-chain fatty acids in HFD-induced mice, significantly activates G protein-coupled receptors, inhibits histone deacetylases, enhances intestinal tight junction expression levels, reduces intestinal permeability, and thereby preserves intestinal barrier integrity. Additionally, TP markedly suppresses the expression of inflammatory cytokines and inhibits the activation of TLR4 signaling pathways.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>These findings suggest that TP holds great promise for improving both obesity management and alleviating intestinal inflammation, and provides a clue for understanding the antiobesity effects of TP.</p>\u0000 </section>\u0000 </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 24","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142684759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phenolics-Rich Extract from Agarwood Leaf-Tea Alleviate Dextran Sulfate Sodium (DSS)-Induced Ulcerative Colitis Via Modulating Intestinal Barrier Function, Liver Inflammation, and Gut Microbiota 从沉香叶茶中提取的富含酚类的提取物通过调节肠道屏障功能、肝脏炎症和肠道微生物群缓解右旋糖酐硫酸钠(DSS)诱发的溃疡性结肠炎
IF 4.5 2区 农林科学
Molecular Nutrition & Food Research Pub Date : 2024-11-21 DOI: 10.1002/mnfr.202400566
Ruyan Fan, Wensong Wei, Youjing Wei, Xue Lin, Shaobo Zhou, Lu Wang
{"title":"Phenolics-Rich Extract from Agarwood Leaf-Tea Alleviate Dextran Sulfate Sodium (DSS)-Induced Ulcerative Colitis Via Modulating Intestinal Barrier Function, Liver Inflammation, and Gut Microbiota","authors":"Ruyan Fan,&nbsp;Wensong Wei,&nbsp;Youjing Wei,&nbsp;Xue Lin,&nbsp;Shaobo Zhou,&nbsp;Lu Wang","doi":"10.1002/mnfr.202400566","DOIUrl":"10.1002/mnfr.202400566","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <h3> Scope</h3>\u0000 \u0000 <p>At present, the incidence rate of ulcerative colitis (UC) continues to increase, causing a global burden. In addition, therapeutic drugs have great side effects. According to modern pharmacology, agarwood leaves have anti-inflammatory, antibacterial, hypoglycemic, and lipid-lowering effects. Therefore, this experiment on DSS induced colitis treatment of polyphenolic substances in agarwood leaves is feasible and in line with the current hot topic of using natural substances instead of drugs for treatment.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and results</h3>\u0000 \u0000 <p>ALP supplementation promotes the expression of tight junction proteins occludin and Zonula occludens protein 1 (ZO-1) on colonic tissues, repairs the intestinal barrier, and relieves further colonic tissue damage. Besides, ALP effectively inhibits the activation of nuclear factor kappa-B (NF-кB) signaling pathway and reduces the release of proinflammatory cytokines. Moreover, ALP reverses the alteration of gut microbiota in the colitic mice by increasing the abundances of Parabacteroides, Chlamydia, and Lachnospiraceae, and decreasing the abundances of Bacteroides and Phocaeicola. Furthermore, the correlation analysis suggested that ALP can attenuate DSS-induced UC, which is probably related to the alterations in the gut microbiota.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>ALP can ameliorate DSS-induced UC by modulating gut microbiota, intestinal barrier function, and inflammatory responses.</p>\u0000 </section>\u0000 </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 24","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142684763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pterostilbene Targets Hallmarks of Aging in the Gene Expression Landscape in Blood of Healthy Rats 紫檀芪靶向健康大鼠血液基因表达图谱中的衰老特征
IF 4.5 2区 农林科学
Molecular Nutrition & Food Research Pub Date : 2024-11-19 DOI: 10.1002/mnfr.202400662
Marco A. Tello-Palencia, Tony Yang, Olga Sularz, Louis Erik Demers, Yuexi Ma, Cayla Boycott, Huiying Amelie Zhang, Katarzyna Lubecka-Gajewska, Sadhri Kumar, Benjamin S. Ramsey, Sandra Torregrosa-Allen, Bennett D. Elzey, Nadia Atallah Lanman, Keegan Korthauer, Barbara Stefanska
{"title":"Pterostilbene Targets Hallmarks of Aging in the Gene Expression Landscape in Blood of Healthy Rats","authors":"Marco A. Tello-Palencia,&nbsp;Tony Yang,&nbsp;Olga Sularz,&nbsp;Louis Erik Demers,&nbsp;Yuexi Ma,&nbsp;Cayla Boycott,&nbsp;Huiying Amelie Zhang,&nbsp;Katarzyna Lubecka-Gajewska,&nbsp;Sadhri Kumar,&nbsp;Benjamin S. Ramsey,&nbsp;Sandra Torregrosa-Allen,&nbsp;Bennett D. Elzey,&nbsp;Nadia Atallah Lanman,&nbsp;Keegan Korthauer,&nbsp;Barbara Stefanska","doi":"10.1002/mnfr.202400662","DOIUrl":"10.1002/mnfr.202400662","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <h3> Scope</h3>\u0000 \u0000 <p>Polyphenols from the phytoestrogen group, including pterostilbene (PTS), are known for their antioxidant, anti-inflammatory, and anti-cancer effects. In recent reports, phytoestrogens attenuate age-related diseases; however, their pro-longevity effects in healthy models in mammals remain unknown. As longevity research demonstrates age-related transcriptomic signatures in human blood, the current study hypothesizes that phytoestrogen-supplemented diet may induce changes in gene expression that ultimately confer pro-longevity benefits.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and results</h3>\u0000 \u0000 <p>In the present study, RNA sequencing is conducted to determine transcriptome-wide changes in gene expression in whole blood of healthy rats consuming diets supplemented with phytoestrogens. Ortholog cell deconvolution is applied to analyze the omics data. The study discovered that PTS leads to changes in the gene expression landscape and PTS-target genes are associated with functions counteracting hallmarks of aging, including genomic instability, epigenetic alterations, compromised autophagy, mitochondrial dysfunction, deregulated nutrient sensing, altered intercellular interaction, and loss of proteostasis. These functions bridge together under anti-inflammatory effects through multiple pathways, including immunometabolism, where changes in cellular metabolism (e.g., ribosome biogenesis) impact the immune system.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>The findings provide a rationale for pre-clinical and clinical longevity studies and encourage investigations on PTS in maintaining cellular homeostasis, decelerating the process of aging, and improving conditions with chronic inflammation.</p>\u0000 </section>\u0000 </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 24","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mnfr.202400662","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gut Microbiota and Tryptophan Metabolism in Pathogenesis of Ischemic Stroke: A Potential Role for Food Homologous Plants 缺血性中风发病机制中的肠道微生物群和色氨酸代谢:食物同源植物的潜在作用。
IF 4.5 2区 农林科学
Molecular Nutrition & Food Research Pub Date : 2024-11-17 DOI: 10.1002/mnfr.202400639
Lei Wang, Na Qin, Liuliu Shi, Rujuan Liu, Ting Zhu
{"title":"Gut Microbiota and Tryptophan Metabolism in Pathogenesis of Ischemic Stroke: A Potential Role for Food Homologous Plants","authors":"Lei Wang,&nbsp;Na Qin,&nbsp;Liuliu Shi,&nbsp;Rujuan Liu,&nbsp;Ting Zhu","doi":"10.1002/mnfr.202400639","DOIUrl":"10.1002/mnfr.202400639","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <h3> Scope</h3>\u0000 \u0000 <p>The intestinal flora is involved in the maintenance of human health and the development of diseases, and is closely related to the brain. As an essential amino acid, tryptophan (TRP) participates in a variety of physiological functions in the body and affects the growth and health of the human body. TRP catabolites produced by the gut microbiota are important signaling molecules for microbial communities and host–microbe interactions, and play an important role in maintaining health and disease pathogenesis.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and results</h3>\u0000 \u0000 <p>The review first demonstrates the evidence of TRP metabolism in stroke and the relationship between gut microbiota and TRP metabolism. Furthermore, the review reveals that food homologous plants (FHP) bioactive compounds have been shown to regulate various metabolic pathways of the gut microbiota, including the biosynthesis of valine, leucine, isoleucine, and vitamin B6 metabolism. The most notable metabolic alteration is in TRP metabolism.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>The interaction between gut microbiota and TRP metabolism offers a plausible explanation for the notable bioactivities of FHP in the treatment of ischemic stroke (IS). This review enhances the comprehension of the underlying mechanisms associated with the bioactivity of FHP on IS.</p>\u0000 </section>\u0000 </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 23","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
α-Tocopherol Long-Chain Metabolite α-T-13′-COOH Exhibits Biphasic Effects on Cell Viability, Induces ROS-Dependent DNA Damage, and Modulates Redox Status in Murine RAW264.7 Macrophages α-生育酚长链代谢物 α-T-13′-COOH 对小鼠 RAW264.7 巨噬细胞的细胞活力、ROS 依赖性 DNA 损伤和氧化还原状态具有双相效应
IF 4.5 2区 农林科学
Molecular Nutrition & Food Research Pub Date : 2024-11-16 DOI: 10.1002/mnfr.202400455
Sijia Liao, Lisa Börmel, Anke Katharina Müller, Luisa Gottschalk, Nadine Pritsch, Lara Zoé Preisner, Oleksandra Samokhina, Maria Schwarz, Anna P. Kipp, Wiebke Schlörmann, Michael Glei, Martin Schubert, Lisa Schmölz, Maria Wallert, Stefan Lorkowski
{"title":"α-Tocopherol Long-Chain Metabolite α-T-13′-COOH Exhibits Biphasic Effects on Cell Viability, Induces ROS-Dependent DNA Damage, and Modulates Redox Status in Murine RAW264.7 Macrophages","authors":"Sijia Liao,&nbsp;Lisa Börmel,&nbsp;Anke Katharina Müller,&nbsp;Luisa Gottschalk,&nbsp;Nadine Pritsch,&nbsp;Lara Zoé Preisner,&nbsp;Oleksandra Samokhina,&nbsp;Maria Schwarz,&nbsp;Anna P. Kipp,&nbsp;Wiebke Schlörmann,&nbsp;Michael Glei,&nbsp;Martin Schubert,&nbsp;Lisa Schmölz,&nbsp;Maria Wallert,&nbsp;Stefan Lorkowski","doi":"10.1002/mnfr.202400455","DOIUrl":"10.1002/mnfr.202400455","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <h3> Scope</h3>\u0000 \u0000 <p>The α-tocopherol long-chain metabolite α-tocopherol-13′-hydroxy-chromanol (α-T-13′-COOH) is a proposed regulatory intermediate of endogenous vitamin E metabolism. Effects of α-T-13′-COOH on cell viability and adaptive stress response are not well understood. The present study aims to investigate the concentration-dependent effects of α-T-13′-COOH on cellular redox homeostasis, genotoxicity, and cytotoxicity in murine RAW264.7 macrophages as a model system.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and results</h3>\u0000 \u0000 <p>Murine RAW264.7 macrophages are exposed to various dosages of α-T-13′-COOH to determine its regulatory effects on reactive oxygen species (ROS) production, DNA damage, expression of stress-related markers, and the activity of ROS scavenging enzymes including superoxide dismutases, catalase, and glutathione-S-transferases. The impact on cell viability is assessed by analyzing cell proliferation, cell cycle arrest, and cell apoptosis.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>α-T-13′-COOH influences ROS production and induces DNA damage in a dose-dependent manner. The metabolite modulates the activity of ROS-scavenging enzymes, with significant changes observed in the activities of antioxidant enzymes. A biphasic response affecting cell viability is noted: sub-micromolar doses of α-T-13′-COOH promote cell proliferation and enhance DNA synthesis, whereas supraphysiological doses lead to DNA damage and cytotoxicity. It hypothesizes an adaptive stress response, characterized by upregulation of ROS detoxification mechanisms, enhanced cell cycle arrest, and increased apoptosis, indicating a correlation with oxidative stress and subsequent cellular damage.</p>\u0000 </section>\u0000 </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 23","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mnfr.202400455","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic Interplay of Diet, Gut Microbiota, and Insulin Resistance: Unraveling the Molecular Nexus 饮食、肠道微生物群和胰岛素抵抗的协同作用:揭示分子关联
IF 4.5 2区 农林科学
Molecular Nutrition & Food Research Pub Date : 2024-11-16 DOI: 10.1002/mnfr.202400677
Rajesh Kanna Gopal, Pitchaipillai Sankar Ganesh, Naji Naseef Pathoor
{"title":"Synergistic Interplay of Diet, Gut Microbiota, and Insulin Resistance: Unraveling the Molecular Nexus","authors":"Rajesh Kanna Gopal,&nbsp;Pitchaipillai Sankar Ganesh,&nbsp;Naji Naseef Pathoor","doi":"10.1002/mnfr.202400677","DOIUrl":"10.1002/mnfr.202400677","url":null,"abstract":"<p>This comprehensive review explores the intricate relationship between gut microbiota, diet, and insulin resistance, emphasizing the novel roles of diet-induced microbial changes in influencing metabolic health. It highlights how diet significantly influences gut microbiota composition, with different dietary patterns fostering diverse microbial communities. These diet-induced changes in the microbiome impact human metabolism by affecting inflammation, energy balance, and insulin sensitivity, particularly through microbial metabolites like short-chain fatty acids (SCFAs). Focusing the key mediators like endotoxemia and systemic inflammation, and introduces personalized microbiome-based therapeutic strategies, it also investigates the effects of dietary components—fiber, polyphenols, and lipids—on microbiota and insulin sensitivity, along with the roles of protein intake and amino acid metabolism. The study compares the effects of Western and Mediterranean diets on the microbiota-insulin resistance axis. Therapeutic implications, including probiotics, fecal microbiota transplantation (FMT), and personalized diets, are discussed. Key findings reveal that high-fat diets, especially those rich in saturated fats, contribute to dysbiosis and increased intestinal permeability, while high-fiber diets promote beneficial bacteria and SCFAs. The review underscores the future potential of food and microbiota interventions for preventing or managing insulin resistance.</p>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 23","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information: Mol. Nutr. Food Res. 21'24 发行信息:Mol.Nutr.21'24
IF 4.5 2区 农林科学
Molecular Nutrition & Food Research Pub Date : 2024-11-16 DOI: 10.1002/mnfr.202470034
{"title":"Issue Information: Mol. Nutr. Food Res. 21'24","authors":"","doi":"10.1002/mnfr.202470034","DOIUrl":"10.1002/mnfr.202470034","url":null,"abstract":"","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 21","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mnfr.202470034","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overweight Leads to an Increase in Vitamin E Absorption and Status in Mice 超重会导致小鼠维生素 E 的吸收和状态增加
IF 4.5 2区 农林科学
Molecular Nutrition & Food Research Pub Date : 2024-11-16 DOI: 10.1002/mnfr.202400509
Katherine Alvarado-Ramos, Ángela Bravo-Núñez, Donato Vairo, Charlotte Sabran, Jean-François Landrier, Emmanuelle Reboul
{"title":"Overweight Leads to an Increase in Vitamin E Absorption and Status in Mice","authors":"Katherine Alvarado-Ramos,&nbsp;Ángela Bravo-Núñez,&nbsp;Donato Vairo,&nbsp;Charlotte Sabran,&nbsp;Jean-François Landrier,&nbsp;Emmanuelle Reboul","doi":"10.1002/mnfr.202400509","DOIUrl":"10.1002/mnfr.202400509","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <h3> Scope</h3>\u0000 \u0000 <p>This study investigates whether vitamin E (VE) deficiency in subjects with obesity could, at least partly, be due to a defect in VE intestinal absorption.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and results</h3>\u0000 \u0000 <p>Mice follow either a high-fat (HF) or a control (CTL) diet for 12 weeks. The study evaluates their VE status, the expression of genes encoding proteins involved in lipid and fat-soluble vitamin intestinal absorption, and VE absorption using a γ-tocopherol-rich emulsion. HF mice have a weight (+23.0%) and an adiposity index (AI, +157.0) superior to CTL mice (<i>p</i> &lt; 0.05). α-Tocopherol concentrations are higher in both plasma (+45.0%) and liver (+116.9%) of HF mice compared to CTL mice (<i>p</i> &lt; 0.05). α-Tocopherol concentration in the adipose tissue of HF mice is higher than that of CTL mice after correction by the AI (+72.4%, <i>p</i> &lt; 0.05). No difference is found in the expression of genes coding for proteins involved in intestinal lipid metabolism in fasting mice. After force-feeding, γ-tocopherol plasma concentration is higher in HF mice compared to CTL mice (+181.5% at 1.5 h after force-feeding, <i>p</i> &lt; 0.05).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>HF mice display higher status and more efficient absorption of VE than CTL mice. VE absorption is thus likely not impaired in the early stages of obesity.</p>\u0000 </section>\u0000 </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 23","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mnfr.202400509","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信