Oral Delivery of Ellagic Acid Encapsulated in Milk Exosomes: Sex-Based Differences in Bioavailability, Urolithin Production, and Gut Microbiota Modulation.
María Ángeles Ávila-Gálvez,María Romo-Vaquero,Carmen Mazarío-Gárgoles,Joao Tomé-Carneiro,María-Carmen López de Las Hazas,Alberto Dávalos,María Victoria Selma,Antonio González-Sarrías,Juan Carlos Espín
{"title":"Oral Delivery of Ellagic Acid Encapsulated in Milk Exosomes: Sex-Based Differences in Bioavailability, Urolithin Production, and Gut Microbiota Modulation.","authors":"María Ángeles Ávila-Gálvez,María Romo-Vaquero,Carmen Mazarío-Gárgoles,Joao Tomé-Carneiro,María-Carmen López de Las Hazas,Alberto Dávalos,María Victoria Selma,Antonio González-Sarrías,Juan Carlos Espín","doi":"10.1002/mnfr.70104","DOIUrl":null,"url":null,"abstract":"Milk exosomes (EXOs) enhance polyphenols' bioavailability, but their potential for oral administration remains underexplored. Ellagic acid (EA) is poorly bioavailable. We investigate whether EA encapsulated in EXOs (EXO-EA) consumed orally improves EA bioavailability and (or) modulates gut microbiota. For 2 weeks, BALB/c mice received EXO, non-encapsulated EA (NEA), or EXO-EA (0.27 mg EA/kg bw) orally. Targeted and untargeted metabolomics (UPLC-qTOF-MS), fecal SCFAs (GC-MS), and gut microbiota (PacBio 16S-sequencing) were performed. Additionally, EA plasma and brain kinetics were evaluated in rats following intravenous administration of EXO-EA and NEA. Unlike NEA, EXO-EA quadrupled EA plasma levels in Sprague-Dawley rats and enabled brain detection. However, oral EXO-EA in mice failed to deliver EA systemically due to gastrointestinal instability, confirmed by in vitro digestion. Sex-dependent EXO-EA metabolomic effects were observed. Also, in males only, EXO-EA increased fecal urolithin A and SCFAs and enriched the microbiota with Christensenellaceae R7, Ruminococcus species, and Clostridium fusiformis, among others. In females, both EXO-EA and NEA enriched the microbiota with bifidobacteria, including Bifidobacterium pseudolongum. Oral EXO-EA impacted plasma metabolome, modulated gut microbiota, and increased urolithin A and SCFA production sex-dependently. However, gastrointestinal instability, limited EA encapsulation, and low dose administered prevented systemic delivery.","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"7 1","pages":"e70104"},"PeriodicalIF":4.5000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Nutrition & Food Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/mnfr.70104","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Milk exosomes (EXOs) enhance polyphenols' bioavailability, but their potential for oral administration remains underexplored. Ellagic acid (EA) is poorly bioavailable. We investigate whether EA encapsulated in EXOs (EXO-EA) consumed orally improves EA bioavailability and (or) modulates gut microbiota. For 2 weeks, BALB/c mice received EXO, non-encapsulated EA (NEA), or EXO-EA (0.27 mg EA/kg bw) orally. Targeted and untargeted metabolomics (UPLC-qTOF-MS), fecal SCFAs (GC-MS), and gut microbiota (PacBio 16S-sequencing) were performed. Additionally, EA plasma and brain kinetics were evaluated in rats following intravenous administration of EXO-EA and NEA. Unlike NEA, EXO-EA quadrupled EA plasma levels in Sprague-Dawley rats and enabled brain detection. However, oral EXO-EA in mice failed to deliver EA systemically due to gastrointestinal instability, confirmed by in vitro digestion. Sex-dependent EXO-EA metabolomic effects were observed. Also, in males only, EXO-EA increased fecal urolithin A and SCFAs and enriched the microbiota with Christensenellaceae R7, Ruminococcus species, and Clostridium fusiformis, among others. In females, both EXO-EA and NEA enriched the microbiota with bifidobacteria, including Bifidobacterium pseudolongum. Oral EXO-EA impacted plasma metabolome, modulated gut microbiota, and increased urolithin A and SCFA production sex-dependently. However, gastrointestinal instability, limited EA encapsulation, and low dose administered prevented systemic delivery.
期刊介绍:
Molecular Nutrition & Food Research is a primary research journal devoted to health, safety and all aspects of molecular nutrition such as nutritional biochemistry, nutrigenomics and metabolomics aiming to link the information arising from related disciplines:
Bioactivity: Nutritional and medical effects of food constituents including bioavailability and kinetics.
Immunology: Understanding the interactions of food and the immune system.
Microbiology: Food spoilage, food pathogens, chemical and physical approaches of fermented foods and novel microbial processes.
Chemistry: Isolation and analysis of bioactive food ingredients while considering environmental aspects.