Erik S. Dassoff, Samar Hamad, Elaina Campagna, Surangi H. Thilakarathna, Marie-Caroline Michalski, Amanda J. Wright
{"title":"Influence of Emulsion Lipid Droplet Crystallinity on Postprandial Endotoxin Transporters and Atherogenic And Inflammatory Profiles in Healthy Men – A Randomized Double-Blind Crossover Acute Meal Study","authors":"Erik S. Dassoff, Samar Hamad, Elaina Campagna, Surangi H. Thilakarathna, Marie-Caroline Michalski, Amanda J. Wright","doi":"10.1002/mnfr.202400365","DOIUrl":"10.1002/mnfr.202400365","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <h3> Scope</h3>\u0000 \u0000 <p>Consumption of high-fat meals is associated with increased endotoxemia, inflammation, and atherogenic profiles, with repeated postprandial responses suggested as contributors to chronically elevated risk factors. However, effects of lipid solid versus liquid state specifically have not been investigated.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and results</h3>\u0000 \u0000 <p>This exploratory randomized crossover study tests the impact of lipid crystallinity on plasma levels of endotoxin transporters (lipopolysaccharide [LPS] binding protein [LBP] and soluble cluster of differentiation 14 [sCD14]) and select proinflammatory and atherogenic markers (tumor necrosis factor-alpha [TNF-α], C-reactive protein [CRP], interleukin-1-beta [IL-1β], interferon-gamma [IFN-γ], interleukin-6 [IL-6], soluble intercellular adhesion molecule [sICAM], soluble vascular cell adhesion molecule [sVCAM], monocyte chemoattractant protein-1 [MCP-1/CCL2], plasminogen activator inhibitor-1 [PAI-1], and fibrinogen). Fasted healthy men (<i>n</i> = 14, 28 ± 5.5 years, 24.1 ± 2.6 kg m<sup>−2</sup>) consumed two 50 g palm stearin oil-in-water emulsions tempered to contain either liquid or crystalline lipid droplets at 37 °C on separate occasions with blood sampling at 0, 2-, 4-, and 6-h post-meal. Timepoint data, area under the curve, and peak concentration values are compared. Overall, no treatment effects are seen (<i>p</i> > 0.05). There are significant effects of time, with values decreasing from baseline, for TNF-α, MCP-1/CCL2, PAI-1, and fibrinogen (<i>p</i> < 0.05).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>Responder analysis pointed to differential treatment effects associated with some participant baseline characteristics but, overall, palm-stearin emulsion droplet crystallinity does not acutely affect plasma endotoxin transporters nor select inflammatory and atherogenic markers.</p>\u0000 </section>\u0000 </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 21","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mnfr.202400365","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142398567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ludovica Lela, Vittorio Carlucci, Chrissa Kioussi, Jaewoo Choi, Jan F. Stevens, Luigi Milella, Daniela Russo
{"title":"Humulus lupulus L.: Evaluation of Phytochemical Profile and Activation of Bitter Taste Receptors to Regulate Appetite and Satiety in Intestinal Secretin Tumor Cell Line (STC-1 Cells)","authors":"Ludovica Lela, Vittorio Carlucci, Chrissa Kioussi, Jaewoo Choi, Jan F. Stevens, Luigi Milella, Daniela Russo","doi":"10.1002/mnfr.202400559","DOIUrl":"10.1002/mnfr.202400559","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <h3> Scope</h3>\u0000 \u0000 <p>Inflorescences of the female hop plant (<i>Humulus lupulus</i> L.) contain biologically active compounds, most of which have a bitter taste. Given the rising global obesity rates, there is much increasing interest in bitter taste receptors (TAS2Rs). Intestinal TAS2Rs can have beneficial effects on obesity when activated by bitter agonists. This study aims to investigate the mechanism of action of a hydroalcoholic hop extract in promoting hormone secretion that reduces the sense of hunger at the intestinal level through the interaction with TAS2Rs.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and results</h3>\u0000 \u0000 <p>The results demonstrate that the hop extract is a rich source of bitter compounds (mainly α-, β-acids) that stimulate the secretion of anorexigenic peptides (glucagon-like peptide 1 [GLP-1], cholecystokinin [CCK]) in a calcium-dependent manner while reducing levels of hunger-related hormones like ghrelin. This effect is mediated through interaction with TAS2Rs, particularly <i>Tas2r138</i> and <i>Tas2r120</i>, and through the activation of downstream signaling cascades. Knockdown of these receptors using siRNA transfection and inhibition of <i>Trpm5</i>, <i>Plcβ-2</i>, and other calcium channels significantly reduces the hop-induced calcium response as well as GLP-1 and CCK secretion.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>This study provides a potential application of <i>H. lupulus</i> extract for the formulation of food supplements with satiating activity capable of preventing or combating obesity.</p>\u0000 </section>\u0000 </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 21","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mnfr.202400559","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142398566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laura Giannotti, Eleonora Stanca, Benedetta Di Chiara Stanca, Francesco Spedicato, Marika Massaro, Stefano Quarta, Daniele Del Rio, Pedro Mena, Luisa Siculella, Fabrizio Damiano
{"title":"Coffee Bioactive N-Methylpyridinium: Unveiling Its Antilipogenic Effects by Targeting De Novo Lipogenesis in Human Hepatocytes","authors":"Laura Giannotti, Eleonora Stanca, Benedetta Di Chiara Stanca, Francesco Spedicato, Marika Massaro, Stefano Quarta, Daniele Del Rio, Pedro Mena, Luisa Siculella, Fabrizio Damiano","doi":"10.1002/mnfr.202400338","DOIUrl":"10.1002/mnfr.202400338","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <h3> Scope</h3>\u0000 \u0000 <p>Type 2 diabetes and nonalcoholic fatty liver diseases (NAFLDs) are promoted by insulin resistance (IR), which alters lipid homeostasis in the liver. This study aims to investigate the effect of <i>N</i>-methylpyridinium (NMP), a bioactive alkaloid of coffee brew, on lipid metabolism in hepatocytes.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and results</h3>\u0000 \u0000 <p>The effect of NMP in modulating lipid metabolism is evaluated at physiological concentrations in a diabetes cell model represented by HepG2 cells cultured in a high-glucose medium. Hyperglycemia triggers lipid droplet accumulation in cells and enhances the lipogenic gene expression, which is transactivated by sterol regulatory element binding protein-1 (SREBP-1). Lipid droplet accumulation alters the redox status and endoplasmic reticulum (ER) stress, leading to the activation of the unfolded protein response and antioxidative pathways by X-Box Binding Protein 1(XBP-1)/eukaryotic Initiation Factor 2 alpha (eIF2α) Protein Kinase RNA-Like ER Kinase and nuclear factor erythroid 2-related factor 2 (NRF2), respectively. NMP induces the phosphorylation of AMP-dependent protein kinase (AMPK) and acetyl-CoA carboxylase α (ACACA), and improves the redox status and ER homeostasis, essential steps to reduce lipogenesis and lipid droplet accumulation.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>These results suggest that NMP may be beneficial for the management of T2D and NAFLD by ameliorating the cell oxidative and ER homeostasis and lipid metabolism.</p>\u0000 </section>\u0000 </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 21","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mnfr.202400338","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring the Effects of Whole Food-Based Dragon Fruit on Metabolic Disorders in High-Fat Diet-Induced Mice","authors":"Pin-Yu Ho, Pin-Xuan Lin, Yen-Chun Koh, Wei-Sheng Lin, Kai-Liang Tang, Yu-Hsin Chen, Monthana Weerawatanakorn, Min-Hsiung Pan","doi":"10.1002/mnfr.202400604","DOIUrl":"10.1002/mnfr.202400604","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <h3> Scope</h3>\u0000 \u0000 <p>Metabolic syndrome (MetS) significantly contributes to premature mortality, with obesity being a major risk factor. Dragon fruit, cultivated globally, exhibits bioactivity in preventing obesity-related diseases. Traditional studies using organic solvents for extraction do not align with actual consumption patterns.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Method and results</h3>\u0000 \u0000 <p>This study evaluates whole red dragon fruit's effectiveness in ameliorating metabolic disorders using a high-fat diet-induced obesity model in mice for 20 weeks. The experimental groups include the supernatant (RS), precipitate (RP), and pomace (PO) of red dragon fruit juice, compared to the supernatant of white dragon fruit juice (WS). The study finds that dragon fruit extracts reduced adipose tissue weight, body fat percentage, pro-inflammatory cytokines, and improved blood lipid profiles. RP is the most effective, reducing body weight by 4.33 g, improving lipid metabolism and glucose homeostasis, and altering gut microbiota to enhance beneficial bacteria and short-chain fatty acids. RP's efficacy in preventing MetS and obesity is attributed to its bioactive components.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>These findings advocate for using whole fruits in developing functional products, amplifying the agricultural economic value of red dragon fruit.</p>\u0000 </section>\u0000 </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 21","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sulforaphane Improves Liver Metabolism and Gut Microbiota in Circadian Rhythm Disorder Mice Models Fed With High-Fat Diets","authors":"Canxia He, Mengyuan Chen, Xiaoxin Jiang, Jingyi Ren, Srikar Varma Ganapathiraju, Peng Lei, Haitao Yang, Prabh Roohan Pannu, Yun Zhao, Xiaohong Zhang","doi":"10.1002/mnfr.202400535","DOIUrl":"10.1002/mnfr.202400535","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <h3> Scope</h3>\u0000 \u0000 <p>This study aims to investigate the effect of sulforaphane (SFN) on hepatic metabolism and gut microbiota in a shifted circadian rhythm (CR) mouse model fed with a high-fat diet (HFD).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and results</h3>\u0000 \u0000 <p>A shifted CR mouse model with HFD is constructed. Biochemical analyses are used to evaluate the effects of SFN on lipid accumulation and liver function. Targeted metabolomics is used for liver metabolites. Results from hematoxylin and eosin staining and Oil Red O staining show that SFN improves liver lipid accumulation and intestinal inflammatory damage in shifted CR treatment with HFD. The concentrations of amino acid metabolites are increased, and the levels of bile acid metabolites are significantly decreased by SFN treatment. Results from 16S rRNA gene sequencing indicate that SFN modulates gut microbiota, particularly by enhancing beneficial bacteria such as <i>Lachnospiraceae</i>, <i>Lactobacillus</i>, <i>Alistipes</i>, <i>Akkermansia</i>, and <i>Eubacteriaum coprostanoligenes</i>. Correlation analysis confirms a close relationship between intestinal microbiota and hepatic metabolites. SFN significantly regulates CR protein expression in the hypothalamus and liver tissues.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>SFN alleviates hepatic metabolic disorder and gut microbiota dysbiosis induced by CR disruption under a high-fat diet in a mouse model, indicating the potential of SFN in regulating CR disruption.</p>\u0000 </section>\u0000 </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 21","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chondroitin Sulfate from Halaelurus burgeri Skin Inhibits Hepatic Endoplasmic Reticulum Stress and Inflammation, and Regulates Gut Microbiota","authors":"Zhaocai Ren, Shang Gao, Shiwei Hu, Sichun Chen, Wei Jiang, Yaming Ge","doi":"10.1002/mnfr.202400501","DOIUrl":"10.1002/mnfr.202400501","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <h3> Scope</h3>\u0000 \u0000 <p>Previous study has demonstrated the chemical structure of chondroitin sulfate (CHS) from <i>Halaelurus burgeri</i> skin and its effects on insulin resistance. However, the precise impact of this phenomenon on endoplasmic reticulum (ER) stress and inflammation, which contribute to insulin resistance, remains unclear. This study is to investigate the impact of CHS on ER stress, inflammatory response and signaling, and gut microbiota in high-fat diet (HFD)-fed mice.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and results</h3>\u0000 \u0000 <p>HFD-fed C57BL/6J mice receive dietary gavage intervention of CHS for 18 weeks. Blood, liver tissue, and feces are harvested for further investigation. Results show that CHS inhibits ER stress, accompanied by lowered blood glucose, nitric oxide (NO), reactive oxygen (ROS), and free fatty acids (FFA) levels, and increases hepatic glycogen accumulation. Moreover, hepatic inflammation is improved by CHS treatment via inactivation of Toll-like receptor 4 (TLR4) signaling and its downstream c-jun N-terminal kinase (JNK) and nuclear factor kappa B (NFκB) pathways. Additionally, CHS regulates gut microbiota, particularly the decline in the Firmicutes to Bacteroidetes ratio. CHS also lowers fecal lipopolysaccharide and elevates several fecal short chain fatty acids.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>These findings suggest that CHS from <i>H. burgeri</i> skin may be an alternative functional food supplement for anti-ER stress, anti-inflammtion, and regulation of gut microbiota.</p>\u0000 </section>\u0000 </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 21","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142325814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marcel W. Debong, Katharina N'Diaye, Daniela Schöberl, Yue Yin, Roman Lang, Andrea Buettner, Thomas Hofmann, Helene M. Loos
{"title":"Linalool, 1,8-Cineole, and Eugenol Transfer from a Curry Dish into Human Urine","authors":"Marcel W. Debong, Katharina N'Diaye, Daniela Schöberl, Yue Yin, Roman Lang, Andrea Buettner, Thomas Hofmann, Helene M. Loos","doi":"10.1002/mnfr.202300396","DOIUrl":"10.1002/mnfr.202300396","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <h3> Scope</h3>\u0000 \u0000 <p>For most substances, there are several routes of excretion from the human body. This study focuses on urinary excretion of dietary odorants and compares the results with previously obtained results on excretion into milk.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and results</h3>\u0000 \u0000 <p>Lactating mothers (<i>n</i> = 18) are given a standardized curry dish and donate urine samples before and after the intervention. The odorants 1,8-cineole, linalool, cuminaldehyde, cinnamaldehyde, 4-hydroxy-2,5-dimethyl-3(2<i>H</i>)-furanone, sotolone, eugenol, vanillin, and γ-nonalactone are quantitatively analyzed. A significant transition of up to 6 µg g<sup>−1</sup> creatinine into urine is observed for linalool, 1,8-cineole, and eugenol. Maximum concentrations are reached 1.5 h after the intervention for 1,8-cineole and eugenol as well as 2.5 h after the intervention for linalool. Comparison with previous results reveals that the excretion pattern of odorants into urine is divergent from the one into milk. In a second intervention study (<i>n</i> = 6), excretion of phase II metabolites into urine is studied using β-glucuronidase treatment. Linalool and eugenol concentrations are 23 and 77 times higher after treatment than before treatment with β-glucuronidase, respectively.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>The study demonstrates transition of linalool, 1,8-cineole, and eugenol from the diet into urine and excretion of glucuronides in the case of linalool, eugenol, and vanillin.</p>\u0000 </section>\u0000 </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mnfr.202300396","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89716224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yufeng Du, Lin Song, Xiufang Dong, Hongyan Li, Wancui Xie, Yuming Wang, Hongxia Che
{"title":"Long-Term Krill Oil Administration Alleviated Early Mild Cognitive Impairment in APP/PS1 Mice","authors":"Yufeng Du, Lin Song, Xiufang Dong, Hongyan Li, Wancui Xie, Yuming Wang, Hongxia Che","doi":"10.1002/mnfr.202200652","DOIUrl":"10.1002/mnfr.202200652","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <h3> Scope</h3>\u0000 \u0000 <p>Alzheimer's disease is an age-dependent neurodegenerative disorder. Mounting studies focus on the improvement of advanced cognitive impairment by dietary nutrients. Krill oil (KO), a rich source of DHA/EPA and astaxanthin, is effective in improving cognitive function. The study mainly investigates the protective effects of long-term KO administration on early cognitive impairment.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and results</h3>\u0000 \u0000 <p>Results show that 2 months KO administration (50 and 100 mg kg<sup>−1</sup> BW) can dramatically promote learning and memory abilities. Mechanism studies demonstrate that KO reduces amyloid β concentration by regulating the amyloidogenic pathway, inhibits neuro-inflammation via regulating TLR4-NLRP3 signaling pathway, and prevents neuron injure. KO supplementation also enhances gut barrier integrity, reduces serum lipopolysaccharide leakage, and alters the gut microbiota by reducing <i>Helicobacteraceae</i>, <i>Lactobacillaceae</i> proportion, increasing <i>Dubosiella</i> and <i>Akkermansia</i> relative abundance. Particularly, a significant increase of isovaleric acid, propionic acid, and acetic acid levels is observed after KO supplementation. Correlation analysis shows that short-chain fatty acids (SCFAs), gut microbiota, and cognitive function are strongly correlated.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>The results reveal that KO relieves early mild cognitive impairment possibly for its role in mediating the gut microbiome-SCFAs-brain axis. Thus, KO may provide potential intervention strategies to prevent cognitive impairment in the early stages through the microbiota-gut-brain axis.</p>\u0000 </section>\u0000 </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 4","pages":""},"PeriodicalIF":5.2,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71475953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
María-Carmen López de las Hazas, Andrea del Saz-Lara, Lídia Cedó, María Carmen Crespo, João Tomé-Carneiro, Luis A. Chapado, Alba Macià, Francesco Visioli, Joan C. Escola-Gil, Alberto Dávalos
{"title":"Hydroxytyrosol Induces Dyslipidemia in an ApoB100 Humanized Mouse Model","authors":"María-Carmen López de las Hazas, Andrea del Saz-Lara, Lídia Cedó, María Carmen Crespo, João Tomé-Carneiro, Luis A. Chapado, Alba Macià, Francesco Visioli, Joan C. Escola-Gil, Alberto Dávalos","doi":"10.1002/mnfr.202300508","DOIUrl":"10.1002/mnfr.202300508","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <h3> Scope</h3>\u0000 \u0000 <p>Extra virgin olive oil has numerous cardiopreventive effects, largely due to its high content of (poly)phenols such as hydroxytyrosol (HT). However, some animal studies suggest that its excessive consumption may alter systemic lipoprotein metabolism. Because human lipoprotein metabolism differs from that of rodents, this study examines the effects of HT in a humanized mouse model that approximates human lipoprotein metabolism.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and results</h3>\u0000 \u0000 <p>Mice are treated as follows: control diet or diet enriched with HT. Serum lipids and lipoproteins are determined after 4 and 8 weeks. We also analyzed the regulation of various genes and miRNA by HT, using microarrays and bioinformatic analysis.</p>\u0000 \u0000 <p>An increase in body weight is found after supplementation with HT, although food intake was similar in both groups. In addition, HT induced the accumulation of triacylglycerols but not cholesterol in different tissues. Systemic dyslipidemia after HT supplementation and impaired glucose metabolism are observed. Finally, HT modulates the expression of genes related to lipid metabolism, such as Pltp or Lpl.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>HT supplementation induces systemic dyslipidemia and impaired glucose metabolism in humanized mice. Although the numerous health-promoting effects of HT far outweigh these potential adverse effects, further carefully conducted studies are needed.</p>\u0000 </section>\u0000 </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71475951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuanyuan Cui, Chun Jing, Yuan Yue, Mengge Ning, Hong Chen, Yahong Yuan, Tianli Yue
{"title":"Kefir Ameliorates Alcohol-Induced Liver Injury Through Modulating Gut Microbiota and Fecal Bile Acid Profile in Mice","authors":"Yuanyuan Cui, Chun Jing, Yuan Yue, Mengge Ning, Hong Chen, Yahong Yuan, Tianli Yue","doi":"10.1002/mnfr.202300301","DOIUrl":"10.1002/mnfr.202300301","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <h3> Scope</h3>\u0000 \u0000 <p>Alcoholic liver disease (ALD) is the leading cause of liver-related deaths worldwide. Kefir has been studied for its properties of anti-obesity, rebuilding intestinal homeostasis, and alleviating non-alcoholic fatty liver disease. However, the possible role of kefir in the prevention or treatment of ALD has not been carefully considered. Here, it evaluated the protective effects of kefir supplementation on alcohol-induced liver injury.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and results</h3>\u0000 \u0000 <p>C57BL/6J mice are fed to Lieber-DeCarli liquid diet containing alcohol to build ALD mouse model, followed by oral administration with kefir. Results indicate that kefir treatment improves liver pathological changes, decreases the expression levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and inflammatory markers, and increases antioxidant levels. Kefir supplementation also restores the intestinal barrier and altered microbial composition, indicates as increases of <i>Blautia</i>, <i>Bacteroides</i>, and <i>Parasutterella</i> and decreases in the Firmicutes/Bacteroidetes (F/B) ratio and populations of <i>Psychrobacter</i>, <i>Bacillus</i>, and <i>Monoglobus</i>. Moreover, kefir supplementation decreases the levels of total bile acids (BAs) and primary BAs and increases the secondary/primary BA ratio. Gut microbes play a key role in the conversion of primary to secondary fecal BAs.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>Kefir can ameliorate ALD through regulating the composition of the gut microbiota.</p>\u0000 </section>\u0000 </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71475952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}