Progress in molecular biology and translational science最新文献

筛选
英文 中文
Inhibitors of amyloid fibril formation. 淀粉样蛋白纤维形成抑制剂。
3区 生物学
Progress in molecular biology and translational science Pub Date : 2024-01-01 Epub Date: 2024-04-22 DOI: 10.1016/bs.pmbts.2024.03.012
Elaheh Tavili, Fatemeh Aziziyan, Khosro Khajeh
{"title":"Inhibitors of amyloid fibril formation.","authors":"Elaheh Tavili, Fatemeh Aziziyan, Khosro Khajeh","doi":"10.1016/bs.pmbts.2024.03.012","DOIUrl":"10.1016/bs.pmbts.2024.03.012","url":null,"abstract":"<p><p>Many diseases are caused by misfolded and denatured proteins, leading to neurodegenerative diseases. In recent decades researchers have developed a variety of compounds, including polymeric inhibitors and natural compounds, antibodies, and chaperones, to inhibit protein aggregation, decrease the toxic effects of amyloid fibrils, and facilitate refolding proteins. The causes and mechanisms of amyloid formation are still unclear, and there are no effective treatments for Amyloid diseases. This section describes research and achievements in the field of inhibiting amyloid accumulation and also discusses the importance of various strategies in facilitating the removal of aggregates species (refolding) in the treatment of neurological diseases such as chemical methods like as, small molecules, metal chelators, polymeric inhibitors, and nanomaterials, as well as the use of biomolecules (peptide and, protein, nucleic acid, and saccharide) as amyloid inhibitors, are also highlighted.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141176241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in CRISPR-Cas systems for blood cancer. CRISPR-Cas 系统在治疗血癌方面的进展。
3区 生物学
Progress in molecular biology and translational science Pub Date : 2024-01-01 Epub Date: 2024-08-26 DOI: 10.1016/bs.pmbts.2024.07.004
Bernice Monchusi, Phumuzile Dube, Mutsa Monica Takundwa, Vanelle Larissa Kenmogne, Deepak Balaji Thimiri Govinda Raj
{"title":"Advances in CRISPR-Cas systems for blood cancer.","authors":"Bernice Monchusi, Phumuzile Dube, Mutsa Monica Takundwa, Vanelle Larissa Kenmogne, Deepak Balaji Thimiri Govinda Raj","doi":"10.1016/bs.pmbts.2024.07.004","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2024.07.004","url":null,"abstract":"<p><p>CRISPR-Cas systems have revolutionised precision medicine by enabling personalised treatments tailored to an individual's genetic profile. Various CRISPR technologies have been developed to target specific disease-causing genes in blood cancers, and some have advanced to clinical trials. Although some studies have explored the in vivo applications of CRISPR-Cas systems, several challenges continue to impede their widespread use. Furthermore, CRISPR-Cas technology has shown promise in improving the response of immunotherapies to blood cancers. The emergence of CAR-T cell therapy has shown considerable success in the targeting and correcting of disease-causing genes in blood cancers. Despite the promising potential of CRISPR-Cas in the treatment of blood cancers, issues related to safety, ethics, and regulatory approval remain significant hurdles. This comprehensive review highlights the transformative potential of CRISPR-Cas technology to revolutionise blood cancer therapy.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142294132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in RNA therapeutics for modulation of 'undruggable' targets. 调节 "不可药用 "靶点的 RNA 疗法的进展。
3区 生物学
Progress in molecular biology and translational science Pub Date : 2024-01-01 Epub Date: 2024-01-17 DOI: 10.1016/bs.pmbts.2023.12.003
Emily Martinsen, Tasmia Jinnurine, Saranya Subramani, Marie Rogne
{"title":"Advances in RNA therapeutics for modulation of 'undruggable' targets.","authors":"Emily Martinsen, Tasmia Jinnurine, Saranya Subramani, Marie Rogne","doi":"10.1016/bs.pmbts.2023.12.003","DOIUrl":"10.1016/bs.pmbts.2023.12.003","url":null,"abstract":"<p><p>Over the past decades, drug discovery utilizing small pharmacological compounds, fragment-based therapeutics, and antibody therapy have significantly advanced treatment options for many human diseases. However, a major bottleneck has been that>70% of human proteins/genomic regions are 'undruggable' by the above-mentioned approaches. Many of these proteins constitute essential drug targets against complex multifactorial diseases like cancer, immunological disorders, and neurological diseases. Therefore, alternative approaches are required to target these proteins or genomic regions in human cells. RNA therapeutics is a promising approach for many of the traditionally 'undruggable' targets by utilizing methods such as antisense oligonucleotides, RNA interference, CRISPR/Cas-based genome editing, aptamers, and the development of mRNA therapeutics. In the following chapter, we will put emphasis on recent advancements utilizing these approaches against challenging drug targets, such as intranuclear proteins, intrinsically disordered proteins, untranslated genomic regions, and targets expressed in inaccessible tissues.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140065803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNA therapeutics for regenerative medicine. 用于再生医学的 RNA 疗法。
3区 生物学
Progress in molecular biology and translational science Pub Date : 2024-01-01 Epub Date: 2024-01-24 DOI: 10.1016/bs.pmbts.2023.12.002
Yen Vy Nguyen Thi, Anh Dao Ngo, Dinh-Toi Chu, Sheng-Che Lin, Chia-Ching Wu
{"title":"RNA therapeutics for regenerative medicine.","authors":"Yen Vy Nguyen Thi, Anh Dao Ngo, Dinh-Toi Chu, Sheng-Che Lin, Chia-Ching Wu","doi":"10.1016/bs.pmbts.2023.12.002","DOIUrl":"10.1016/bs.pmbts.2023.12.002","url":null,"abstract":"<p><p>It is estimated that millions of people around the world experience various types of tissue injuries every year. Regenerative medicine was born and developed for understanding and application with the aim of replacing affected organs or some cells. The research, manufacture, production, and distribution of RNA in cells have acted as a basic foundation for the development and testing of therapies and treatments that are widely applied in different fields of medicine. Vaccines against COVID-19 are considered one of the brilliant and outstanding successes of RNA therapeutics research. With the characteristics of bio-derived RNA therapeutics, the mechanism of rapid implementation, safe production, and flexibility to create proteins depending on actual requirements. Based on the advantages above in this review, we discuss RNA therapeutics for regenerative medicine, and the types of RNA therapies currently being used for regenerative medicine. The relationship between disease and regenerative medicine is currently being studied or tested in RNA therapeutics. We have also covered the mechanisms of action of RNA therapy for regenerative medicine and some of the limitations in our current understanding of the effects of RNA therapy in this area. Additionally, we have also covered developing RNA therapeutics for regenerative medicine, focusing on RNA therapeutics for regenerative medicine. As a final point, we discuss potential applications for therapeutics for regenerative medicine in the future, as well as their mechanisms.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140065812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Future insights. 未来展望。
3区 生物学
Progress in molecular biology and translational science Pub Date : 2024-01-01 Epub Date: 2023-12-21 DOI: 10.1016/bs.pmbts.2023.11.004
Asiya Kamber Zaidi
{"title":"Future insights.","authors":"Asiya Kamber Zaidi","doi":"10.1016/bs.pmbts.2023.11.004","DOIUrl":"10.1016/bs.pmbts.2023.11.004","url":null,"abstract":"<p><p>This chapter explores two significant aspects of the ongoing COVID-19 pandemic: the realistic prediction of its end and the status of long-term COVID in 2023. While the World Health Organization (WHO) declared an end to COVID-19 as a public health emergency, the possibility of future waves caused by variants remains. Widespread vaccination and prior infections provide substantial protection, but the virus is expected to persist, necessitating continued monitoring and potential reimplementation of control measures. Long-term COVID, characterized by persistent or new symptoms after the acute phase, remains a concern. Recent findings suggest a reduced risk of prolonged COVID with initial Omicron variants. However, targeted treatments are lacking, and current approaches rely on symptomatic and supportive care. Psychological support and multidisciplinary interventions are essential. Comprehensive studies, standardized criteria, and international registries are needed to advance research and develop effective therapies. Understanding these uncertainties will guide us towards effectively managing the pandemic and providing optimal care for long COVID patients.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139492085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SARS-CoV-2-Virus structure and life cycle. SARS-CoV-2 病毒的结构和生命周期。
3区 生物学
Progress in molecular biology and translational science Pub Date : 2024-01-01 Epub Date: 2024-01-04 DOI: 10.1016/bs.pmbts.2023.09.001
Sameer Saleem Tebha, Aimen Tameezuddin, Sanchit Bajpai, Asiya Kamber Zaidi
{"title":"SARS-CoV-2-Virus structure and life cycle.","authors":"Sameer Saleem Tebha, Aimen Tameezuddin, Sanchit Bajpai, Asiya Kamber Zaidi","doi":"10.1016/bs.pmbts.2023.09.001","DOIUrl":"10.1016/bs.pmbts.2023.09.001","url":null,"abstract":"<p><p>This book chapter presents a concise overview of SARS-CoV-2, the virus responsible for the COVID-19 pandemic. It explores viral classification based on morphology and nucleic acid composition with a focus on DNA and RNA viruses, the SARS-CoV-2 structure including the structural as well as nonstructural proteins in detail, and the viral replication mechanisms. The chapter then delves into the characteristics and diversity of coronaviruses, particularly SARS-CoV-2, highlighting its similarities with other beta-coronaviruses. The replication and transcription complex, RNA elongation, and capping, as well as the role of accessory proteins in viral replication and modulation of the host immune response is discussed extensively.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139492089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Morphological features and types of aggregated structures. 聚集结构的形态特征和类型。
3区 生物学
Progress in molecular biology and translational science Pub Date : 2024-01-01 Epub Date: 2024-04-02 DOI: 10.1016/bs.pmbts.2024.03.003
Mansoureh Mirza Agha, Vladimir N Uversky
{"title":"Morphological features and types of aggregated structures.","authors":"Mansoureh Mirza Agha, Vladimir N Uversky","doi":"10.1016/bs.pmbts.2024.03.003","DOIUrl":"10.1016/bs.pmbts.2024.03.003","url":null,"abstract":"<p><p>In vivo, protein aggregation arises due to incorrect folding or misfolding. The aggregation of proteins into amyloid fibrils is the characteristic feature of various misfolding diseases known as amyloidosis, such as Alzheimer's and Parkinson's disease. The heterogeneous nature of these fibrils restricts the extent to which their structure may be characterized. Advancements in techniques, such as X-ray diffraction, cryo-electron microscopy, and solid-state NMR have yielded intricate insights into structures of different amyloid fibrils. These studies have unveiled a diverse range of polymorphic structures that typically conform to the cross-β amyloid pattern. This chapter provides a concise overview of the information acquired in the field of protein aggregation, with particular focus on amyloids.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141176243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Factors influencing amyloid fibril formation. 影响淀粉样蛋白纤维形成的因素
3区 生物学
Progress in molecular biology and translational science Pub Date : 2024-01-01 Epub Date: 2024-04-16 DOI: 10.1016/bs.pmbts.2024.03.015
Fereshteh Ramezani Khorsand, Fatemeh Aziziyan, Khosro Khajeh
{"title":"Factors influencing amyloid fibril formation.","authors":"Fereshteh Ramezani Khorsand, Fatemeh Aziziyan, Khosro Khajeh","doi":"10.1016/bs.pmbts.2024.03.015","DOIUrl":"10.1016/bs.pmbts.2024.03.015","url":null,"abstract":"<p><p>Protein aggregation is a complex process with several stages that lead to the formation of complex structures and shapes with a broad variability in stability and toxicity. The aggregation process is affected by various factors and environmental conditions that disrupt the protein's original state, including internal factors like mutations, expression levels, and polypeptide chain truncation, as well as external factors, such as dense molecular surroundings, post-translation modifications, and interactions with other proteins, nucleic acids, small molecules, metal ions, chaperones, and lipid membranes. During the aggregation process, the biological activity of an aggregating protein may be reduced or eliminated, whereas the resulting aggregates may have the potential to be immunogenic, or they may have other undesirable properties. Finding the cause(s) of protein aggregation and controlling it to an acceptable level is among the most crucial topics of research in academia and biopharmaceutical companies. This chapter aims to review intrinsic pathways of protein aggregation and potential extrinsic variables that influence this process.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141176238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The hidden world of protein aggregation. 蛋白质聚集的隐秘世界
3区 生物学
Progress in molecular biology and translational science Pub Date : 2024-01-01 Epub Date: 2024-04-16 DOI: 10.1016/bs.pmbts.2024.03.014
Bahareh Dabirmanesh, Khosro Khajeh, Vladimir N Uversky
{"title":"The hidden world of protein aggregation.","authors":"Bahareh Dabirmanesh, Khosro Khajeh, Vladimir N Uversky","doi":"10.1016/bs.pmbts.2024.03.014","DOIUrl":"10.1016/bs.pmbts.2024.03.014","url":null,"abstract":"<p><p>Though the book's journey into The Hidden World of Protein Aggregation has come to an end, the search for knowledge, the development of healthier lives, and the discovery of nature's mysteries continue, promising new horizons and discoveries yet to be discovered. The intricacies of protein misfolding and aggregation remain a mystery in cellular biology, despite advances made in unraveling them. In this chapter, we will summarize the specific conclusions from the previous chapters and explore the persistent obstacles and unanswered questions that motivate scientists to pursue exploration of protein misfolding and aggregation.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141176247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent development in CRISPR-Cas systems for human protozoan diseases. 针对人类原生动物疾病的 CRISPR-Cas 系统的最新发展。
3区 生物学
Progress in molecular biology and translational science Pub Date : 2024-01-01 Epub Date: 2024-08-17 DOI: 10.1016/bs.pmbts.2024.07.010
Utkarsh Gangwar, Himashree Choudhury, Risha Shameem, Yashi Singh, Abhisheka Bansal
{"title":"Recent development in CRISPR-Cas systems for human protozoan diseases.","authors":"Utkarsh Gangwar, Himashree Choudhury, Risha Shameem, Yashi Singh, Abhisheka Bansal","doi":"10.1016/bs.pmbts.2024.07.010","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2024.07.010","url":null,"abstract":"<p><p>Protozoan parasitic diseases pose a substantial global health burden. Understanding the pathogenesis of these diseases is crucial for developing intervention strategies in the form of vaccine and drugs. Manipulating the parasite's genome is essential for gaining insights into its fundamental biology. Traditional genomic manipulation methods rely on stochastic homologous recombination events, which necessitates months of maintaining the cultured parasites under drug pressure to generate desired transgenics. The introduction of mega-nucleases (MNs), zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs) greatly reduced the time required for obtaining a desired modification. However, there is a complexity associated with the design of these nucleases. CRISPR (Clustered regularly interspaced short palindromic repeats)/Cas (CRISPR associated proteins) is the latest gene editing tool that provides an efficient and convenient method for precise genomic manipulations in protozoan parasites. In this chapter, we have elaborated various strategies that have been adopted for the use of CRISPR-Cas9 system in Plasmodium, Leishmania and Trypanosoma. We have also discussed various applications of CRISPR-Cas9 pertaining to understanding of the parasite biology, development of drug resistance mechanism, gene drive and diagnosis of the infection.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142294154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信