{"title":"Morphological features and types of aggregated structures.","authors":"Mansoureh Mirza Agha, Vladimir N Uversky","doi":"10.1016/bs.pmbts.2024.03.003","DOIUrl":"10.1016/bs.pmbts.2024.03.003","url":null,"abstract":"<p><p>In vivo, protein aggregation arises due to incorrect folding or misfolding. The aggregation of proteins into amyloid fibrils is the characteristic feature of various misfolding diseases known as amyloidosis, such as Alzheimer's and Parkinson's disease. The heterogeneous nature of these fibrils restricts the extent to which their structure may be characterized. Advancements in techniques, such as X-ray diffraction, cryo-electron microscopy, and solid-state NMR have yielded intricate insights into structures of different amyloid fibrils. These studies have unveiled a diverse range of polymorphic structures that typically conform to the cross-β amyloid pattern. This chapter provides a concise overview of the information acquired in the field of protein aggregation, with particular focus on amyloids.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"206 ","pages":"85-109"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141176243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Factors influencing amyloid fibril formation.","authors":"Fereshteh Ramezani Khorsand, Fatemeh Aziziyan, Khosro Khajeh","doi":"10.1016/bs.pmbts.2024.03.015","DOIUrl":"10.1016/bs.pmbts.2024.03.015","url":null,"abstract":"<p><p>Protein aggregation is a complex process with several stages that lead to the formation of complex structures and shapes with a broad variability in stability and toxicity. The aggregation process is affected by various factors and environmental conditions that disrupt the protein's original state, including internal factors like mutations, expression levels, and polypeptide chain truncation, as well as external factors, such as dense molecular surroundings, post-translation modifications, and interactions with other proteins, nucleic acids, small molecules, metal ions, chaperones, and lipid membranes. During the aggregation process, the biological activity of an aggregating protein may be reduced or eliminated, whereas the resulting aggregates may have the potential to be immunogenic, or they may have other undesirable properties. Finding the cause(s) of protein aggregation and controlling it to an acceptable level is among the most crucial topics of research in academia and biopharmaceutical companies. This chapter aims to review intrinsic pathways of protein aggregation and potential extrinsic variables that influence this process.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"206 ","pages":"55-83"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141176238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bahareh Dabirmanesh, Khosro Khajeh, Vladimir N Uversky
{"title":"The hidden world of protein aggregation.","authors":"Bahareh Dabirmanesh, Khosro Khajeh, Vladimir N Uversky","doi":"10.1016/bs.pmbts.2024.03.014","DOIUrl":"10.1016/bs.pmbts.2024.03.014","url":null,"abstract":"<p><p>Though the book's journey into The Hidden World of Protein Aggregation has come to an end, the search for knowledge, the development of healthier lives, and the discovery of nature's mysteries continue, promising new horizons and discoveries yet to be discovered. The intricacies of protein misfolding and aggregation remain a mystery in cellular biology, despite advances made in unraveling them. In this chapter, we will summarize the specific conclusions from the previous chapters and explore the persistent obstacles and unanswered questions that motivate scientists to pursue exploration of protein misfolding and aggregation.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"206 ","pages":"473-494"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141176247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sunny Dawoodi, Syed A.A. Rizvi, Asiya Kamber Zaidi
{"title":"Innate immune responses to SARS-CoV-2","authors":"Sunny Dawoodi, Syed A.A. Rizvi, Asiya Kamber Zaidi","doi":"10.1016/bs.pmbts.2023.11.003","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2023.11.003","url":null,"abstract":"<p><span></span>This chapter provides an overview of the innate immune response to SARS-CoV-2, focusing on the recognition, activation, and evasion strategies employed by the virus. The innate immune system plays a crucial role in the early defense against viral infections, and understanding its response to SARS-CoV-2 is essential for developing effective therapeutic approaches. The chapter begins by explaining the basics of the innate immune system, including its components and salient features. It discusses the various pattern recognition receptors involved in recognizing SARS-CoV-2, such as toll-like receptors, RIG-I-like receptors, NOD-like receptors, and other cytosolic sensors. The binding and entry of the virus into host cells and subsequent activation of innate immune cells, including neutrophils, monocytes, macrophages, dendritic cells, NK cells, and ILCs, are explored. Furthermore, the secretion of key cytokines and chemokines, including type I interferons, IL-6, IL-17, and TNF-alpha, is discussed as part of the innate immune response. The concept of PANoptosis, involving programmed cell death mechanisms, is introduced as a significant aspect of the response to SARS-CoV-2. The chapter also addresses the innate immune evasion strategies employed by SARS-CoV-2, which allow the virus to evade or subvert the host immune response, contributing to viral persistence. Understanding these strategies is crucial for developing targeted therapies against the virus.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"99 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139474711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Asiya Kamber Zaidi, Sanchit Bajpai, Puya Dehgani-Mobaraki
{"title":"B cell responses to SARS-CoV-2","authors":"Asiya Kamber Zaidi, Sanchit Bajpai, Puya Dehgani-Mobaraki","doi":"10.1016/bs.pmbts.2023.11.006","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2023.11.006","url":null,"abstract":"<p><span></span>This chapter provides an overview of B cell responses in COVID-19, highlighting the structure of SARS-CoV-2 and its impact on B cell immunity. It explores the production and maturation of SARS-CoV-2-specific B cells, with a focus on the two distinct phases of the humoral immune response: the extrafollicular (EF) phase and the germinal <span></span>center (GC) phase. Furthermore, the interplay between B cells, follicular T helper cells, CD4+ T cells, and plasma cells is discussed, emphasizing their collaborative role in mounting an effective humoral immune response against SARS-CoV-2. The concept of immunological memory is explored, highlighting the roles of plasma cells and B memory cells in providing long-term protection. The chapter delves into the antibody response during SARS-CoV-2 infection, categorizing the types of antibodies generated. This includes a detailed analysis of neutralizing antibodies, such as those directed against the receptor-binding domain (RBD) and the N-terminal domain (NTD), as well as non-neutralizing antibodies. The role of mucosal antibodies, cross-reactive antibodies, and auto-reactive antibodies is also discussed. Factors influencing the dynamics of anti-SARS-CoV-2 antibodies are examined, including the duration and strength of the humoral response. Additionally, the chapter highlights the impact of the Omicron variant on humoral immune responses and its implications for vaccine efficacy and antibody-mediated protection.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139474735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laiqha Khadri, Mohammad Hossein Ziraksaz, Ahmad Bashir Barekzai, Baber Ghauri
{"title":"T cell responses to SARS-CoV-2","authors":"Laiqha Khadri, Mohammad Hossein Ziraksaz, Ahmad Bashir Barekzai, Baber Ghauri","doi":"10.1016/bs.pmbts.2023.06.001","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2023.06.001","url":null,"abstract":"<p><span></span>This chapter provides a comprehensive analysis of T cell responses in COVID-19, focusing on T cell differentiation, specificity, and functional characteristics during SARS-CoV-2 infection. The differentiation of T cells in COVID-19 is explored, highlighting the key factors that influence T cell fate and effector functions. The immunology of the spike protein, a critical component of SARS-CoV-2, is discussed in detail, emphasizing its role in driving T-cell responses. The cellular immune responses against SARS-CoV-2 during acute infection are examined, including the specificity, phenotype, and functional attributes of SARS-CoV-2-specific T-cell responses. Furthermore, the chapter <span></span>explores T-cell cross-recognition against other human coronaviruses (HCoVs) and the mechanisms of immune regulation mediated by spike proteins. This includes the induction of regulation through the innate immune system, the activation of self-spike protein-cross-reactive regulatory T cells, and the impact of self-tolerance on the regulation of spike proteins. The chapter investigates T cell responses to self-spike proteins and their implications in disease. The role of spike proteins as immunological targets in the context of COVID-19 is examined, shedding light on potential therapeutic interventions and clinical trials in autoimmune diseases. In conclusion, this chapter provides a comprehensive understanding of T cell responses in COVID-19, highlighting their differentiation, immune regulation, and clinical implications. This knowledge contributes to the development of targeted immunotherapies, vaccine strategies, and diagnostic approaches for COVID-19 and other related diseases.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"59 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139474769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Index","authors":"","doi":"10.1016/s1877-1173(23)00172-2","DOIUrl":"https://doi.org/10.1016/s1877-1173(23)00172-2","url":null,"abstract":"Abstract not available","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"42 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138509008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Half title page","authors":"","doi":"10.1016/s1877-1173(23)00166-7","DOIUrl":"https://doi.org/10.1016/s1877-1173(23)00166-7","url":null,"abstract":"Abstract not available","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"42 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138509009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Contributors","authors":"","doi":"10.1016/s1877-1173(23)00169-2","DOIUrl":"https://doi.org/10.1016/s1877-1173(23)00169-2","url":null,"abstract":"Abstract not available","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"43 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138509007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Title page","authors":"","doi":"10.1016/s1877-1173(23)00167-9","DOIUrl":"https://doi.org/10.1016/s1877-1173(23)00167-9","url":null,"abstract":"Abstract not available","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"40 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138509016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}