Jonathan Isaac Segal, Wan-Lin Hu, Paul H Fuoss, Frank E Ritter, Jeff Shrager
{"title":"A multi-scale cognitive interaction model of instrument operations at the Linac Coherent Light Source.","authors":"Jonathan Isaac Segal, Wan-Lin Hu, Paul H Fuoss, Frank E Ritter, Jeff Shrager","doi":"10.1063/5.0239302","DOIUrl":"https://doi.org/10.1063/5.0239302","url":null,"abstract":"<p><p>The Linac Coherent Light Source (LCLS) is the world's first x-ray free electron laser. It is a scientific user facility operated by the SLAC National Accelerator Laboratory, at Stanford, for the U.S. Department of Energy. As beam time at LCLS is extremely valuable and limited, experimental efficiency-getting the most high quality data in the least time-is critical. Our overall project employs cognitive engineering methodologies with the goal of improving experimental efficiency and increasing scientific productivity at LCLS by refining experimental interfaces and workflows, simplifying tasks, reducing errors, and improving operator safety and stress. Here, we describe a multi-agent, multi-scale computational cognitive interaction model of instrument operations at LCLS. Our model simulates the aspects of human cognition at multiple cognitive and temporal scales, ranging from seconds to hours, and among agents playing multiple roles, including instrument operator, real time data analyst, and experiment manager. The model can roughly predict impacts stemming from proposed changes to operational interfaces and workflows. Example results demonstrate the model's potential in guiding modifications to improve operational efficiency. We discuss the implications of our effort for cognitive engineering in complex experimental settings and outline future directions for research. The model is open source, and the videos of the supplementary material provide extensive detail.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"96 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143060387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A simple cavity-enhanced laser-based heater for reflective samples.","authors":"Kai Golibrzuch, Alec M Wodtke","doi":"10.1063/5.0248517","DOIUrl":"https://doi.org/10.1063/5.0248517","url":null,"abstract":"<p><p>Surface science instruments require excellent vacuum to ensure surface cleanliness; they also require control of sample temperature, both to clean the surface of contaminants and to control reaction rates at the surface, for example, for molecular beam epitaxy and studies of heterogeneous catalysis. Standard approaches to sample heating within high vacuum chambers involve passing current through filaments of refractory metals, which then heat the sample by convective, radiative, or electron bombardment induced heat transfer. Such hot filament methods lead to outgassing of molecules from neighboring materials that are inadvertently heated; they also produce electrons and ions that may interfere with other aspects of the surface science experiment. Hot filaments may even disintegrate when used in the presence of gases introduced to induce surface reactions on the sample. Optical heating using lasers can deliver energy directly to the sample, ensuring that only the sample is heated and surroundings within the vacuum chamber are not, while simultaneously eliminating the need for hot filaments. Despite this advantage, optical heating is not commonly employed-such methods are considered complex, expensive, and unreliable. More fundamentally, surface scientists are often interested in metallic samples, whose reflectivity may limit the efficiency of laser heating. In this paper, we describe a simple and inexpensive sample heater based on a commercial diode laser, whose heating efficiency is enhanced by a concave aluminum mirror placed behind the sample. The geometry of the reflector and sample ensures that a stable optical cavity is produced. Using only 26 W of laser power directed to the sample with a fiber optic, a 1-cm diameter × 2-mm thick Pt sample could be heated to 1400 K within 1 min. Excellent programmable temperature control and long-term temperature stability are also demonstrated. Sample heating to 900 °C was performed with negligible increase in chamber pressure. The entire setup comprises components costing less than typical electron bombardment heaters.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"96 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143067409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of a 300 kV/3 kHz nanosecond pulse generator using semiconductor opening switches.","authors":"Yu-Hao Chen, Jie Yang, Yan-Zhao Xie","doi":"10.1063/5.0223667","DOIUrl":"https://doi.org/10.1063/5.0223667","url":null,"abstract":"<p><p>In this paper, we present the development of a nanosecond pulse generator utilizing semiconductor opening switches (SOS), designed to deliver high voltage and operate at a high repetitive frequency. The pulse generator comprises three main components: a primary charging unit, a magnetic pulse compression unit, and an SOS magnification unit. To ensure stable operation of the high-power charging unit at high repetitive frequencies, a rectifying resonant charging and energy recovery circuit are implemented, providing a 1 kV charging voltage at a 3 kHz repetition rate. The three-stage magnetic pulse compression is designed to reduce the pulse width from tens of microseconds to tens of nanoseconds, where self-demagnetization could be completed during repetitive frequency operation. To achieve an output voltage of 300 kV, multiple SOS switches are employed in a series. The developed pulse generator achieves a final output of 300 kV with a 3 kHz repetitive frequency under a load of 2 kΩ. Furthermore, the effects of multiple factors on the output performance are characterized by both simulation and measurement for a comprehensive analysis.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"96 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142914937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microwave thermal imaging system for debonding detection of radar absorbing materials.","authors":"Yihang Tu, Ziqiao Tang, Yang Qiu, Beibei Wang","doi":"10.1063/5.0235306","DOIUrl":"https://doi.org/10.1063/5.0235306","url":null,"abstract":"<p><p>In this paper, a microwave thermal imaging system (MTIS) has been presented for debonding detection of radar absorbing materials (RAMs). First, an overview of the mechanism underlying microwave heating and the fundamental principle of defect detection within RAMs is presented. Then, a multifunctional MTIS capable of performing both microwave lock-in thermography (MLIT) and long-pulse microwave thermography (LPMT) has been introduced, specifically tailored for the in situ inspection of RAMs. In addition, in this system, the detection area for a single scan is 90 * 90 mm2, with the emission source operating at a frequency of 5.8 GHz and boasting a maximum output power of 20 W. Next, based on MTIS, the above-mentioned two thermography techniques are applied to detect defects in RAMs. In addition, thermal contrast (Tc) and signal-to-noise ratio are introduced for the analysis of imaging results. Finally, the results show that LPMT can be used for preliminary detection of debonding defects in RAMs, while MLIT can be further used for detailed detection of debonding defects in RAMs. In addition, the minimum detection time of this MTIS is 45 s, and the minimum detectable defect aperture is 3 mm.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"96 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142954120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On-machine separation and compensation of target mirror's surface shape errors in multidimensional interferometric measurement system.","authors":"Zuyang Zhang, Qiangxian Huang, Jun Lu, Hongli Li, Rongjun Cheng, Liansheng Zhang","doi":"10.1063/5.0232489","DOIUrl":"https://doi.org/10.1063/5.0232489","url":null,"abstract":"<p><p>In multi-dimensional nanopositioning and nanomeasuring devices, interference measurement is widely used. The three-dimensional (3D) target mirror serves as the spatial reference plane to achieve multidimensional interference measurements. However, the surface shape errors of the target mirror are superimposed on the geometric dimensions of the measured workpiece, which limits the system's overall measurement accuracy. This paper proposes a method for on-machine separation and compensation of the target mirror's surface shape errors based on the micro-nano-coordinate measuring machine (MNCMM) that employs interference measurement. This method provides the model for the separation and compensation of the surface shape errors. The MNCMM employs a home-made resonant probe and a reference flat crystal to achieve the separation experiment. Subsequently, an interpolation algorithm is used to compensate for the surface shape errors at any point in space according to the compensation model. By comparing the flatness measurement results of a standard flat crystal with a flatness of 50 nm before and after compensation, the flatness is reduced from 175 to 77 nm. It demonstrates the reliability of the method. This method can be widely applied to on-machine compensation for surface shape errors in multidimensional interference measurement systems.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"96 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142954123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The passive core snubber based on Fe-based amorphous alloy for -400 kV negative ion based neutral beam injector of comprehensive research facility for fusion technology.","authors":"Bo Liu, Zhimin Liu, Caichao Jiang, Sheng Liu, Junjun Pan, Shiyong Chen, Wei Wei, Wei Liu, Yuanlai Xie","doi":"10.1063/5.0217637","DOIUrl":"https://doi.org/10.1063/5.0217637","url":null,"abstract":"<p><p>Comprehensive Research Facility for Fusion Technology (CRAFT) is a technology development and validation platform for fusion technology in China. Neutral beam injection is one of the most important auxiliary heating and current drive methods in magnetically confined controlled fusion. Consequently, a negative ion based neutral beam injector (NNBI) testing facility with a beam energy of 400 keV is being developed in CRAFT. The core snubber, which provides an equivalent parallel resistance and inductance, will be used as the main surge suppression method for the CRAFT NNBI power supply system. In this paper, a core snubber for CRAFT NNBI based on Fe-based amorphous alloy is designed. The transmission line resistance, inductance, and capacitance of the high-voltage circuit have been considered during the design process. The snubber is made thin and long for even weight distribution while ensuring choke capacity. One of the snubber units was tested on the test bench. The test results indicate that the choke capacity of the snubber meets the requirement and can achieve significant suppression of peak ignition current and oscillation.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"96 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142932430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Honglin Wu, Zhongbin Wang, Lei Si, Xiaoyu Zou, Jinheng Gu, Dong Wei, Chao Tan
{"title":"A sticking predictor construction and evaluation method for drill tools sticking prediction.","authors":"Honglin Wu, Zhongbin Wang, Lei Si, Xiaoyu Zou, Jinheng Gu, Dong Wei, Chao Tan","doi":"10.1063/5.0220209","DOIUrl":"https://doi.org/10.1063/5.0220209","url":null,"abstract":"<p><p>The construction and evaluation of the sticking predictor are the basis of drill tool sticking prediction. This paper proposes a method to construct and evaluate the sticking predictor for rod-deflection sticking accidents. First, one uses various feature extraction methods to extract the sticking features from the sticking signal. Second, we introduce the Mann-Kendall method to test the obtained feature parameters and select the feature parameters that can reflect and track the sticking evolutionary trend. Third, the sticking predictor is constructed by calculating the weight values of the screened features. Finally, to test the effectiveness of the sticking predictor, we propose the sticking predictor evaluation model. The experimental result shows that the constructed sticking predictor in this paper is superior to other input features and provides a reference for predicting sticking accidents in engineering practice.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"96 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143071278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benjamin Oliker, Greg Pitz, David A Hostutler, Timothy Madden, Wolfgang Rudolph
{"title":"Analyzing the potential of ion chambers to measure laser-induced ionization rates.","authors":"Benjamin Oliker, Greg Pitz, David A Hostutler, Timothy Madden, Wolfgang Rudolph","doi":"10.1063/5.0218592","DOIUrl":"https://doi.org/10.1063/5.0218592","url":null,"abstract":"<p><p>We demonstrate and analyze the use of an ion chamber for measuring laser-induced ionization in cesium gas for the first time, which is of recent interest due to research in diode pumped alkali lasers (DPALs). In this report, the viability of an ion chamber diagnostic with high plasma density and ionization localized to a laser beam is investigated. A simulation of the laser-induced plasma in the ion chamber, based on the Thomson model with diffusion, is developed and will be shown to display similar qualitative behavior to measurements, and bound test results within model uncertainty. The analysis will show that complex processes occur: (1) space-charge limited ion drift, (2) Debye shielding preventing the electric field from penetrating a bulk plasma region, and (3) ambipolar diffusion across the bulk with possibly elevated electron temperature. However, these processes are well understood and do not limit the accuracy of an ion chamber diagnostic for laser-induced ionization rate measurement.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"96 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143071289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Song Li, Fanzheng Zeng, Quancai Zhang, Hao Cai, Quan Sun, Baoliang Qian
{"title":"Study on a compact pulse forming line-Marx type high voltage pulse generator.","authors":"Song Li, Fanzheng Zeng, Quancai Zhang, Hao Cai, Quan Sun, Baoliang Qian","doi":"10.1063/5.0233985","DOIUrl":"https://doi.org/10.1063/5.0233985","url":null,"abstract":"<p><p>High power pulse generators are moving in the direction of compact, solid-state, and stable working in a relatively long time. In this paper, a compact pulse forming line-Marx type high power pulse generator, based on a ceramic pulse forming line and a spark gap switch with carbide modified graphite electrodes, is studied numerically and experimentally. Specifically, a ceramic based pulse forming line with high relative permittivity was used to achieve long pulse duration in a limited dimension. A spark gap switch with carbide modified graphite electrodes was proposed to decrease the erosion of the electrodes, which can efficiently prolong the lifetime of the device. The generator was built. With a charging voltage of 34 kV approximately, pulses with peak current over 2.56 kA and a duration of about 86 ns were obtained on a matched dummy load of 50 Ω. The dimensions of the generator are 360 × 280 × 300 mm3. The device can continue working over 6000 pulses with a repetitive rate of 10 Hz, which meets potential applications, including plasma science research.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"96 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143010756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K Yamada, B Bixler, Y Sakurai, P C Ashton, J Sugiyama, K Arnold, J Begin, L Corbett, S Day-Weiss, N Galitzki, C A Hill, B R Johnson, B Jost, A Kusaka, B J Koopman, J Lashner, A T Lee, A Mangu, H Nishino, L A Page, M J Randall, D Sasaki, X Song, J Spisak, T Tsan, Y Wang, P A Williams
{"title":"Erratum: \"The Simons Observatory: Cryogenic half wave plate rotation mechanism for the small aperture telescopes\" [Rev. Sci. Instrum. 95, 024504 (2024)].","authors":"K Yamada, B Bixler, Y Sakurai, P C Ashton, J Sugiyama, K Arnold, J Begin, L Corbett, S Day-Weiss, N Galitzki, C A Hill, B R Johnson, B Jost, A Kusaka, B J Koopman, J Lashner, A T Lee, A Mangu, H Nishino, L A Page, M J Randall, D Sasaki, X Song, J Spisak, T Tsan, Y Wang, P A Williams","doi":"10.1063/5.0252360","DOIUrl":"https://doi.org/10.1063/5.0252360","url":null,"abstract":"","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"96 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143010822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}