{"title":"Characterization of liquid-thickness distribution in micropores on elastic surface under sliding and pressurizing conditions.","authors":"Yoshiyasu Ichikawa, Rikuto Shinozuka, Shinya Sugisawa, Tatsuhiko Hatano, Yoshio Kaji, Isao Kuwayama, Masahiro Motosuke","doi":"10.1063/5.0226400","DOIUrl":"https://doi.org/10.1063/5.0226400","url":null,"abstract":"<p><p>To improve the performance of studless tires on ice surfaces, the mechanism of liquid film removal must be elucidated. In this study, an experimental system is developed to simulate the running conditions of a studless tire, and the microscopic liquid film flow generated between the rubber surface and glass is observed to evaluate the liquid thickness distribution. Liquid film removal by micropores on foamed rubber samples is investigated by visualizing the liquid thickness in the micropores. The proposed system enables variations in the pressure and sliding velocity between the rubber and glass. The liquid thickness in the micropores is measured using laser-induced fluorescence, and the effects of pressure and sliding velocity on the thickness are examined. Water penetrates the micropores on the rubber sample surface, and different liquid thicknesses are obtained for each pore. The amount of liquid penetrating the pores is affected to a greater extent by the sliding velocity than by the pressure. Therefore, liquid penetration is more strongly influenced by the hydrodynamic effect of the increasing inertia of the liquid under high sliding velocities than by the elastic deformation of the pore.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lanhai He, Melby Johny, Thomas Kierspel, Karol Długołęcki, Sadia Bari, Rebecca Boll, Hubertus Bromberger, Marcello Coreno, Alberto De Fanis, Michele Di Fraia, Benjamin Erk, Mathieu Gisselbrecht, Patrik Grychtol, Per Eng-Johnsson, Tommaso Mazza, Jolijn Onvlee, Yevheniy Ovcharenko, Jovana Petrovic, Nils Rennhack, Daniel E Rivas, Artem Rudenko, Eckart Rühl, Lucas Schwob, Marc Simon, Florian Trinter, Sergey Usenko, Joss Wiese, Michael Meyer, Sebastian Trippel, Jochen Küpper
{"title":"Controlled molecule injector for cold, dense, and pure molecular beams at the European x-ray free-electron laser.","authors":"Lanhai He, Melby Johny, Thomas Kierspel, Karol Długołęcki, Sadia Bari, Rebecca Boll, Hubertus Bromberger, Marcello Coreno, Alberto De Fanis, Michele Di Fraia, Benjamin Erk, Mathieu Gisselbrecht, Patrik Grychtol, Per Eng-Johnsson, Tommaso Mazza, Jolijn Onvlee, Yevheniy Ovcharenko, Jovana Petrovic, Nils Rennhack, Daniel E Rivas, Artem Rudenko, Eckart Rühl, Lucas Schwob, Marc Simon, Florian Trinter, Sergey Usenko, Joss Wiese, Michael Meyer, Sebastian Trippel, Jochen Küpper","doi":"10.1063/5.0219086","DOIUrl":"https://doi.org/10.1063/5.0219086","url":null,"abstract":"<p><p>A permanently available molecular-beam injection setup for controlled molecules (COMO) was installed and commissioned at the small quantum systems (SQS) instrument at the European x-ray free-electron laser (EuXFEL). A b-type electrostatic deflector allows for pure state-, size-, and isomer-selected samples of polar molecules and clusters. The source provides a rotationally cold (T ≈ 1 K) and dense (ρ ≈ 108 cm-3) molecular beam with pulse durations up to 100 µs generated by a new version of the Even-Lavie valve. Here, a performance overview of the COMO setup is presented along with characterization experiments performed both with an optical laser at the Center for Free-Electron-Laser Science and with x rays at EuXFEL under burst-mode operation. COMO was designed to be attached to different instruments at the EuXFEL, in particular, the SQS and single particles, clusters, and biomolecules (SPB) instruments. This advanced controlled-molecules injection setup enables x-ray free-electron laser studies using highly defined samples with soft and hard x-ray FEL radiation for applications ranging from atomic, molecular, and cluster physics to elementary processes in chemistry and biology.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y Langevin, F Poulet, G Piccioni, G Filacchione, C Dumesnil, F Tosi, J Carter, A Barbis, P Haffoud, L Tommasi, M Vincendon, S De Angelis, I Guerri, C Pilorget, S Rodriguez, S Stefani, D Bolsée, M Cisneros, L Van Laeken, N Pereira, A Carapelle
{"title":"Calibration of MAJIS (Moons and Jupiter Imaging Spectrometer). IV. Radiometric calibration (invited).","authors":"Y Langevin, F Poulet, G Piccioni, G Filacchione, C Dumesnil, F Tosi, J Carter, A Barbis, P Haffoud, L Tommasi, M Vincendon, S De Angelis, I Guerri, C Pilorget, S Rodriguez, S Stefani, D Bolsée, M Cisneros, L Van Laeken, N Pereira, A Carapelle","doi":"10.1063/5.0202702","DOIUrl":"https://doi.org/10.1063/5.0202702","url":null,"abstract":"<p><p>The MAJIS (Moons and Jupiter Imaging Spectrometer) instrument is an imaging spectrometer on-board the JUICE (JUpiter ICy moons Explorer) spacecraft. MAJIS covers the spectral range from 0.5 to 5.54 μm with two channels [visible-near infrared (VISNIR) and IR]. A comprehensive campaign of on-ground MAJIS calibration was conducted in August and September 2021 in the IAS (Institut d'Astrophysique Spatiale, CNRS/Université Paris-Saclay) facilities. In this article, we present the results relevant for the radiometric calibration of MAJIS. Due to the specific characteristics of the MAJIS detectors (H1RG from Teledyne), an extensive detector characterization campaign was implemented for both the VISNIR and IR detectors before integration so as to validate readout procedures providing precision and accuracy. The characterization also provided critical information on linearity and operability as a function of the integration time and operating temperature. The radiometric calibration of the integrated MAJIS instrument focused on the determination of the instrument transfer function in terms of DN output per unit of radiance for each MAJIS data element as a function of its position in the field of view of MAJIS and its central wavelength. The radiometric calibration of the VISNIR channel required a specific procedure due to stray light at short wavelengths. Observations of an internal calibration source during calibration and after launch (April 14, 2023) showed that there were minor changes in both the VISNIR and IR channels. The instrument transfer functions to be used in flight have been updated on this basis.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142649006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C Verona, A Fabbri, A Fazzi, L Bianchi, V Conte, G Petringa, A Raso, G Verona Rinati
{"title":"Development of a compact and portable diamond-based detection system for dosimetry and microdosimetry in ion beam therapy.","authors":"C Verona, A Fabbri, A Fazzi, L Bianchi, V Conte, G Petringa, A Raso, G Verona Rinati","doi":"10.1063/5.0235400","DOIUrl":"https://doi.org/10.1063/5.0235400","url":null,"abstract":"<p><p>Ion beam therapy techniques have advanced significantly in the past two decades. However, the development of dosimetric verification methods has lagged. Traditional dosimetry, which offers a macroscopic view of the absorbed dose, fails to address the micrometric-scale stochastic effects crucial for understanding biological responses. To bridge this gap, microdosimeters are used to assess physical quantities correlated with radiation effects. This work reports on the design and testing of a novel detection system based on synthetic single crystal diamond. The system is capable of simultaneously performing dosimetric and microdosimetric characterizations of clinical ion beams. The detector incorporates two active components configured as diamond Schottky diodes, both integrated on a single crystal diamond substrate. In particular, one very small element (sensitive area 0.0078 mm2) was designed to evaluate microdosimetric metrics, while the other large one (sensitive area 4.2 mm2) was designed to measure the absorbed dose to water. Diamond detectors were characterized using the ion beam induced charge (IBIC) technique, employing a 1 MeV protons microbeam. The IBIC map of the diamond detector shows two distinct sensitive areas with quite uniform sensitivity, well contained within the metallic contact regions. Dedicated front-end electronic circuits were designed and implemented for both the dosimetric and microdosimetric signals. These circuits, along with the integrated diamond detector, were embedded in an aluminum waterproof housing to minimize electronic interference. This configuration enables a compact, portable setup compatible with water phantoms. Laboratory tests with alpha particles yielded promising results, demonstrating stable and reproducible responses with a good signal-to-noise ratio.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Frequency-domain instrument with custom ASIC for dual-slope near-infrared spectroscopy.","authors":"Alper Kılıç, Giles Blaney, Fatemeh Tavakoli, Jodee Frias, Angelo Sassaroli, Sergio Fantini, Valencia Koomson","doi":"10.1063/5.0227363","DOIUrl":"https://doi.org/10.1063/5.0227363","url":null,"abstract":"<p><p>Real-time and non-invasive measurements of tissue concentrations of oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR) are invaluable for research and clinical use. Frequency-domain near-infrared spectroscopy (FD-NIRS) enables non-invasive measurement of these chromophore concentrations in human tissue. We present a small form factor, dual-wavelength, miniaturized FD-NIRS instrument for absolute optical measurements, built around a custom application-specific integrated circuit and a dual-slope/self-calibrating (DS/SC) probe. The modulation frequency is 55 MHz, and the heterodyning technique was used for intensity and phase readout, with an acquisition rate of 0.7 Hz. The instrument consists of a 14 × 17 cm2 printed circuit board (PCB), a Raspberry Pi 4, an STM32G491 microcontroller, and the DS/SC probe. The DS/SC approach enables this instrument to be selective to deeper tissue and conduct absolute measurements without calibration. The instrument was initially validated using a tissue-mimicking solid phantom, and upon confirming its suitability for in vivo, a vascular occlusion experiment on a human subject was conducted. For the phantom experiments, an average of 0.08° phase noise and 0.10% standard deviation over the mean for the intensities was measured at a source-detector distance of 35 mm. The absorption and reduced scattering coefficients had average precisions (variation of measurement over time) of 0.5% and 0.9%, respectively, on a window of ten frames. Results from the in vivo experiment yielded the expected increase in HbO2 and HbR concentration for all measurement types tested, namely SC, DS intensity, and DS phase.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel J Rodriguez, Mai A Her, Igor O Usov, D J Safarik, Rommel Jones, Michael G Heidlage, Timothy J Gorey
{"title":"An automatic multi-precursor flow-type atomic layer deposition system.","authors":"Daniel J Rodriguez, Mai A Her, Igor O Usov, D J Safarik, Rommel Jones, Michael G Heidlage, Timothy J Gorey","doi":"10.1063/5.0222271","DOIUrl":"https://doi.org/10.1063/5.0222271","url":null,"abstract":"<p><p>Designs for two automated atomic layer deposition (ALD) flow reactors are presented, and their capabilities for coating additively manufactured (AM) metal prints are described. One instrument allows the coating of several AM parts in batches, while the other is useful for single part experiments. To demonstrate reactor capabilities, alumina (Al2O3) was deposited onto AM 316L stainless steel by dosing with water (H2O) vapor and trimethylaluminum (TMA) and purging with nitrogen gas (N2). Both instruments are controlled by custom-programmed LabVIEW software that enables in situ logging of temperature, total pressure, and film thickness using a quartz crystal microbalance. An initial result shows that 150 ALD cycles led to a film thickness of ∼55 nm, which was verified with Rutherford backscattering spectroscopy. This indicates that the reactors were indeed depositing single atomic layers of Al2O3 per ALD cycle, as intended.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research on laser measurement point cloud preprocessing and 3D reconstruction technology for free-form surfaces.","authors":"Bin Sun, Junfang Song, Yi Cao, Xiaoqian Zhao","doi":"10.1063/5.0237429","DOIUrl":"https://doi.org/10.1063/5.0237429","url":null,"abstract":"<p><p>Surface morphology measurement and reconstruction technology based on point cloud data is one of the key technologies for 3D information processing in the digital manufacturing industry and has been widely applied in fields such as reverse engineering, computer vision, and unmanned driving system navigation. A method for 3D modeling of aircraft-engine blade profiles based on laser measurement point cloud data is proposed to address the difficulties in measuring the 3D morphology of aircraft-engine blades and the low modeling accuracy. This method first preprocesses the measured point cloud and then uses Poisson's algorithm to reconstruct the blade surface in three dimensions based on the calculation of the point cloud normal. Through error statistical analysis, the overall reconstruction effect is good. The experimental results further validated the generality and effectiveness of this method.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tiesheng Dong, Jiaqi Zhang, Qilin Shu, Long Xin, Jiao Ge
{"title":"A lightweight semi-active ankle exoskeleton utilized NiTiCu-based shape memory alloys for energy storage.","authors":"Tiesheng Dong, Jiaqi Zhang, Qilin Shu, Long Xin, Jiao Ge","doi":"10.1063/5.0201547","DOIUrl":"https://doi.org/10.1063/5.0201547","url":null,"abstract":"<p><p>Nowadays, exoskeletons have a place in many fields, such as industrial production, medical rehabilitation, and military. However, there are still many shortcomings in the existing exoskeleton, such as heavyweight and complex structures for active exoskeleton. The driving ability of passive exoskeletons is limited. To reduce the energy consumption of wearers, based on the characteristics of the semi-active ankle exoskeleton, this paper proposes to use NiTiCu-based shape memory alloys (SMA) as the energy storage source to improve the power density. Compared to NiTi-based SMA, the phase transformation process of NiTiCu-based SMA is more rapid, which can solve the response delay problem to a certain extent. The ankle exoskeleton uses SMA deformation to compress the bias spring. When the human ankle joint needs auxiliary torque, the SMA releases the energy stored by the bias spring and transfers the energy to the ankle exoskeleton to achieve the effect of assisting the human ankle joint. During the assistance process, a control system based on the SMA mathematical model is constructed. The above-mentioned ideas provide a new approach for further expanding power density and can be widely applied in the field of robotics. During characterization, this semi-active ankle exoskeleton can effectively complete the movement state of upstairs and walking, achieve an effective power of 180 N, and store maximum energy up to 5 J for the human ankle.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L Antonelli, W Theobald, F Barbato, S Atzeni, D Batani, R Betti, V Bouffetier, A Casner, L Ceurvorst, D Cao, J J Ruby, K Glize, T Goudal, A Kar, M Khan, A Dearling, M Koenig, P M Nilson, R H H Scott, O Turianska, M Wei, N C Woolsey
{"title":"X-ray phase-contrast imaging of strong shocks on OMEGA EP.","authors":"L Antonelli, W Theobald, F Barbato, S Atzeni, D Batani, R Betti, V Bouffetier, A Casner, L Ceurvorst, D Cao, J J Ruby, K Glize, T Goudal, A Kar, M Khan, A Dearling, M Koenig, P M Nilson, R H H Scott, O Turianska, M Wei, N C Woolsey","doi":"10.1063/5.0168059","DOIUrl":"https://doi.org/10.1063/5.0168059","url":null,"abstract":"<p><p>The ongoing improvement in laser technology and target fabrication is opening new possibilities for diagnostic development. An example is x-ray phase-contrast imaging (XPCI), which serves as an advanced x-ray imaging diagnostic in laser-driven experiments. In this work, we present the results of the XPCI platform that was developed at the OMEGA EP Laser-Facility to study multi-Mbar single and double shocks produced using a kilojoule laser driver. Two-dimensional radiation-hydrodynamic simulations agree well with the shock progression and the spherical curvature of the shock fronts. It is demonstrated that XPCI is an excellent method to determine with high accuracy the front position of a trailing shock wave propagating through an expanding CH plasma that was heated by a precursor Mbar shock wave. The interaction between the rarefaction wave and the shock wave results in a clear signature in the radiograph that is well reproduced by radiation-hydrodynamic simulations.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S Kubota, R Lantsov, T L Rhodes, S Banerjee, D P Boyle, A Maan, R Majeski
{"title":"Integration of fixed-frequency and FM-CW (frequency-modulated continuous-wave) reflectometers for coincident turbulence measurements on LTX-β (Lithium Tokamak eXperiment-β).","authors":"S Kubota, R Lantsov, T L Rhodes, S Banerjee, D P Boyle, A Maan, R Majeski","doi":"10.1063/5.0219837","DOIUrl":"https://doi.org/10.1063/5.0219837","url":null,"abstract":"<p><p>The fixed-frequency and frequency-modulated continuous-wave (FM-CW) reflectometers on LTX-β (Lithium Tokamak eXperiment-β) have been configured to use the same transmission lines and antenna arrays for coincident views of the core and edge plasma. The fixed-frequency channels (13.1-20.5 and 20-40 GHz, tunable between discharges) provide time-resolved measurements of density fluctuations, while the FM-CW channels (13.1-20.2 and 19.5-33.5 GHz) measure the density profile and fluctuations, with high spatial resolution and a sampling rate determined by the frequency sweep interval (5 μs). Data from both reflectometers are synchronously acquired to simultaneously leverage the wide bandwidth and high spatial resolution of the respective systems. Experiments showed that mutual crosstalk interference is momentary and does not diminish the capability of either system. Spectral analysis indicated broad power spectra (several hundreds of kHz) and suggests that the signals from the FM-CW system are consistent with under-sampled fixed-frequency signals. Radial correlations were explored using data from the two reflectometers, as well as from the FM-CW system alone. The core channels showed high levels of agreement between these two comparisons, suggesting that the data from the reflectometers are interchangeable for statistical estimates. For the edge channels, comparisons using data from the FM-CW reflectometer alone showed significant decorrelation due to time lag caused by the finite frequency up-sweep duration. Alternatively, this effect is eliminated when cross-correlating data from the different reflectometers. These results highlight the advantages of operating the fixed-frequency and FM-CW reflectometers in this manner, where the combined system can overcome the limitations of each separate system.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}