{"title":"A novel non-singular fixed-time terminal sliding mode control method for multi-input multi-output systems subject to uncertainties.","authors":"Bin Guo, JianChun Liao, Xingxing You, Songyi Dian","doi":"10.1063/5.0266102","DOIUrl":null,"url":null,"abstract":"<p><p>This paper introduces a novel fixed-time non-singular terminal sliding mode control (NFTTSM) method for addressing the trajectory tracking problem in multi-input multi-output systems subject to uncertainties. First, a fixed-time disturbance observer (FTDO) is designed to compensate for system parameter uncertainties and external disturbances. Subsequently, a variable-gain fixed-time reaching law (VGFTRL), formulated based on a decision function, is proposed to ensure the rapid convergence of the sliding mode variable to the sliding surface, thereby enhancing system robustness. Furthermore, a novel non-singular terminal sliding mode (NNTSM) surface, constructed using the hyperbolic tangent function, is introduced to guarantee that the system state converges to zero within a fixed time along the sliding surface, effectively improving control accuracy while mitigating singularity issues. Building upon FTDO, VGFTRL, and NNTSM, a non-singular fixed-time terminal sliding mode (NFTTSM) controller is developed to ensure that the system state tracks the desired trajectory within a fixed time, with the proposed control scheme ensuring that the tracking time remains independent of initial conditions, thereby offering enhanced control performance. The fixed-time convergence property of the proposed methodology is rigorously established through theoretical analysis. Finally, a manipulator system is applied to validate the feasibility and superiority of the proposed approach, confirming its effectiveness in handling system uncertainties while ensuring precise and robust trajectory tracking.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"96 6","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0266102","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a novel fixed-time non-singular terminal sliding mode control (NFTTSM) method for addressing the trajectory tracking problem in multi-input multi-output systems subject to uncertainties. First, a fixed-time disturbance observer (FTDO) is designed to compensate for system parameter uncertainties and external disturbances. Subsequently, a variable-gain fixed-time reaching law (VGFTRL), formulated based on a decision function, is proposed to ensure the rapid convergence of the sliding mode variable to the sliding surface, thereby enhancing system robustness. Furthermore, a novel non-singular terminal sliding mode (NNTSM) surface, constructed using the hyperbolic tangent function, is introduced to guarantee that the system state converges to zero within a fixed time along the sliding surface, effectively improving control accuracy while mitigating singularity issues. Building upon FTDO, VGFTRL, and NNTSM, a non-singular fixed-time terminal sliding mode (NFTTSM) controller is developed to ensure that the system state tracks the desired trajectory within a fixed time, with the proposed control scheme ensuring that the tracking time remains independent of initial conditions, thereby offering enhanced control performance. The fixed-time convergence property of the proposed methodology is rigorously established through theoretical analysis. Finally, a manipulator system is applied to validate the feasibility and superiority of the proposed approach, confirming its effectiveness in handling system uncertainties while ensuring precise and robust trajectory tracking.
期刊介绍:
Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.