Ingo A Müller, Filip Thörn, Samyuktha Rajan, Remi-André Olsen, Per G P Ericson, Valentina Peona, Brian Tilston Smith, Gibson Maiah, Bonny Koane, Bulisa Iova, Mozes P K Blom, Martin Irestedt, Knud A Jønsson
{"title":"Ephemeral Speciation in a New Guinean Honeyeater Complex (Aves: Melidectes).","authors":"Ingo A Müller, Filip Thörn, Samyuktha Rajan, Remi-André Olsen, Per G P Ericson, Valentina Peona, Brian Tilston Smith, Gibson Maiah, Bonny Koane, Bulisa Iova, Mozes P K Blom, Martin Irestedt, Knud A Jønsson","doi":"10.1111/mec.17760","DOIUrl":"https://doi.org/10.1111/mec.17760","url":null,"abstract":"<p><p>Speciation is a fundamental concept in evolutionary biology, and understanding the mechanisms driving speciation remains the foremost research topic within this field. Hybridisation is often involved in speciation and can influence its rates, potentially accelerating, decelerating or even reversing the process. This study investigates the evolutionary history of the New Guinean bird genus Melidectes, consisting of six species that inhabit various montane regions at different elevations. While most Melidectes species have allopatric distributions, two species overlap in the central mountain range and hybridise. However, plumage differences and elevational adaptations are assumed to maintain the species' boundaries. Utilising specimens from natural history collections and comprehensive genomic analyses, including a de novo genome assembly, we characterise allopatric speciation patterns within the genus and highlight how future speciation could potentially be driven by climate change. Contrary to previous hypotheses, our findings suggest that in the two distributionally overlapping species, phenotypic differences do not prevent gene flow. We find limited acoustic differentiation and extensive admixture across most of their distributions. Divergence and admixture levels conform poorly to the current taxonomy and follow a geographical pattern in which the most isolated populations at the ends of the distributions are most divergent and show least admixture. However, in contrast, their mitochondrial genomes do group in accordance with species identity, namely, into two deeply divergent lineages. We propose that this system demonstrates the ephemeral nature of speciation, in which two incipient species have started mixing extensively as they came into secondary contact, resulting in nearly complete fusion into a single lineage.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17760"},"PeriodicalIF":4.5,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143956252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring Mitonuclear Discordance: Ghost Introgression From an Ancient Extinction Lineage in the Odorrana swinhoana Complex","authors":"Chin-Chia Shen, Ikuo Miura, Tzong-Han Lin, Mamoru Toda, Hung Ngoc Nguyen, Hui-Yun Tseng, Si-Min Lin","doi":"10.1111/mec.17763","DOIUrl":"https://doi.org/10.1111/mec.17763","url":null,"abstract":"<div>\u0000 \u0000 <p>Mitonuclear discordance, the incongruence between mitochondrial DNA (mtDNA) and nuclear DNA (nuDNA), is a well-documented phenomenon with various potential explanations. One emerging hypothesis, ghost introgression, refers to the genetic contribution of an ancient, extinct or unsampled lineage and can now be tested using modern genomic data and demographic models. In this study, we investigated the evolutionary history of the <i>Odorrana swinhoana</i> complex (Anura: Ranidae), which includes <i>O. swinhoana</i>, <i>O. utsunomiyaorum</i> and an unidentified population with highly divergent mtDNA. While mitochondrial phylogeny suggested this population as a basal lineage, nuclear data from ddRADseq revealed it as a mixture of the most derived <i>O. swinhoana</i> nuclear sequences combined with ancient mtDNA. Demographic modelling further supported ghost introgression, as all models incorporating a ghost population outperformed those without it. These findings suggest that an eastward expansion of western <i>O. swinhoana</i> replaced an ancient <i>Odorrana</i> lineage, leaving only its mtDNA and fragments of its nuclear genome in the hybrid population. Our results provide one of the first documented cases of ghost introgression in amphibians and highlight its potential as a widespread evolutionary process. This study also underscores the risks of relying solely on mtDNA for phylogenetic reconstruction and species delimitation.</p>\u0000 </div>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"34 10","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143909236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inheritance or Recruitment? The Assembly Mechanisms and Functional Dynamics of Microbial Communities in the Life Cycle of a Wood-Feeding Beetle","authors":"Si-Xun Ge, Yi-Ming Niu, Li-Li Ren, Shi-Xiang Zong","doi":"10.1111/mec.17751","DOIUrl":"https://doi.org/10.1111/mec.17751","url":null,"abstract":"<div>\u0000 \u0000 <p>Microbial partners enhance the metabolic capabilities of insects, enabling their adaptation to diverse ecological niches. Xylophagous insects have larvae that can digest lignocellulose and cope with plant secondary metabolites (PSMs). However, there is little information in terms of microbiome sources, dynamics and species contributions. This limits our understanding of the interaction between xylophagous insects and the microbiome. <i>Monochamus saltuarius</i> (Cerambycidae) is a significant borer of conifers. We used combined qPCR, host genomic and microbiome metagenomic datasets, as well as in vitro validation experiments to study the dynamics of the associated microbiome and its interactions with <i>M. saltuarius</i>. We evaluated microbial metabolic/biosynthetic contributions and validated their related functions. Our findings revealed that insect growth and development altered the quantity and community composition of associated bacteria and fungi. The egg microbiome was particularly susceptible to alteration due to oviposition pits. Bacterial transmission largely persisted between developmental stages, while fungal re-acquisition primarily originated from the external environment. By reconstructing community pathway maps, we identified the cooperative interactions between the insect and its gut microbiome. As larvae transitioned from phloem to xylem feeding, the functional role of the gut microbiome in various pathways was weakened. Remarkably, high-contribution bacterial species largely overlapped across different functional roles, and these species also showed considerable overlap between phloem and xylem feeding periods. Overall, our study highlights the unique interaction between xylophagous insects and their microbiome, which enhances their ability in lignocellulose digestion, PSMs degradation and the acquisition of essential amino acids, as well as vitamins.</p>\u0000 </div>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"34 9","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143852992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chyi Yin Gwee, Dirk Metzler, Jérôme Fuchs, Jochen B. W. Wolf
{"title":"Reconciling Gene Tree Discordance and Biogeography in European Crows","authors":"Chyi Yin Gwee, Dirk Metzler, Jérôme Fuchs, Jochen B. W. Wolf","doi":"10.1111/mec.17764","DOIUrl":"https://doi.org/10.1111/mec.17764","url":null,"abstract":"<p>Reconstructing the evolutionary history of young lineages diverging with gene flow is challenging due to factors like incomplete lineage sorting, introgression, and selection causing gene tree discordance. The European crow hybrid zone between all-black carrion crows and grey-coated hooded crows exemplifies this challenge. Most of the genome in Western and Central European carrion crow populations is near-identical to hooded crows, but differs substantially from their Iberian congeners. A notable exception is a single major-effect colour-locus under sexual selection aligning with the ‘species’ tree. To understand the underlying evolutionary processes, we reconstructed the biogeographic history of the species complex. During the Pleistocene carrion and hooded crows took refuge in the Iberian Peninsula and the Middle East, respectively. Allele-sharing of all-black Western European populations with likewise black Iberian crows at the colour-locus represents the last trace of carrion crow ancestry, resisting gene flow from expanding hooded crow populations that have homogenised most of the genome. A model of colour-locus introgression from an Iberian ancestor into hooded crow populations near the Pyrenées was significantly less supported. We found no positive relationship between introgression and recombination rate consistent with the absence of genome-wide, polygenic barriers in this young species complex. Overall, this study portrays a scenario where few large-effect loci, subject to divergent sexual selection, resist rampant and asymmetric gene exchange. This study underscores the importance of integrating population demography and biogeography to accurately interpret patterns of gene tree discordance following population divergence.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"34 10","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17764","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143909367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Wet Season Environments Drive Local Adaptation in the Timber Tree Dicorynia guianensis in French Guiana.","authors":"Julien Bonnier, Enrique Sáez Laguna, Thomas Francisco, Valérie Troispoux, Olivier Brunaux, Sylvain Schmitt, Stéphane Traissac, Niklas Tysklind, Myriam Heuertz","doi":"10.1111/mec.17759","DOIUrl":"https://doi.org/10.1111/mec.17759","url":null,"abstract":"<p><p>The vast tropical rainforests of the Guiana Shield in Northern South America play a vital role in maintaining the region's ecological balance and economy. Increasing pressure from selective logging, gold mining and climate variability threatens these ecosystems. Sustainable rainforest management requires understanding the genetic diversity and local adaptation of key tree species to inform conservation. This study focuses on Dicorynia guianensis (Fabaceae), a widespread and economically important tree species in French Guiana. We performed genome resequencing on 87 individuals sampled in 11 sites across French Guiana to investigate the genetic structure, diversity and genetic basis of local adaptation. Genetic structure analysis identified three distinct groups: western, central and eastern, with similar levels of genetic diversity distributed in areas with different environmental conditions. Six methods applied to detect genomic signatures of selection revealed region-specific selective sweeps and a weak overlap between single nucleotide polymorphisms (SNPs) identified through outlier analysis or genome-environment association analyses. The strongest associations between environmental variables and genomic constitution were observed for potential evapotranspiration of the wettest quarter and for precipitation of the coldest quarter, suggesting that environmental variables related to high rainfall during the wet season are stronger drivers of local adaptation of D. guianensis populations than drought. Sites located in central and western French Guiana had higher risks of climatic maladaptation. These findings advance our understanding of local adaptation and climatic vulnerability in tropical trees and emphasise the need for targeted, area-specific management strategies for conservation and sustainable timber extraction under climate change.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17759"},"PeriodicalIF":4.5,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143802055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Historical Misstep: Niche Shift to Specialisation Is Pushing Insular Ginger Towards an Evolutionary Dead End","authors":"Min-Wei Chai, Hsin-Pei Lu, Pei-Chun Liao","doi":"10.1111/mec.17765","DOIUrl":"10.1111/mec.17765","url":null,"abstract":"<div>\u0000 \u0000 <p>Niche specialisation is a double-edged sword as it aids species in adapting to a particular environment but makes them more susceptible to environmental change, which may result in species extinction. Although it has long been debated whether niche specialisation necessarily falls into an ‘evolutionary dead end’, empirical evidence from a population genetics perspective remains scant, especially when comparing both ecological generalists and specialists simultaneously. In this study, we scrutinised two Taiwan endemic gingers (<i>Zingiber pleiostachyum</i> and <i>Z. shuanglongense</i>) to evaluate how their contrasting patterns in niche breadth evolution have shaped their evolutionary trajectories. We utilised a genome-wide sequencing approach to investigate the demographic histories of each species, assess their maladaptation to future climate change, and estimate their mutational loads. Our results revealed distinct demographic histories between these two gingers. <i>Z. shuanglongense</i>, as the specialist, despite an initial increase during the Last Glacial Maximum (~22 Kya), has been subjected to a long-term decrease in effective population size (<i>N</i>e), while <i>Z. pleiostachyum</i> is on the contrary increasing, leading to a significantly larger current <i>N</i>e. Furthermore, ecological specialists are much more vulnerable to future climate change and exhibit greater drift-associated deleterious mutations compared to generalists, directly affecting species' fitness. This study strongly supports the idea that the transition in niche breadth towards specialisation will push <i>Z. shuanglongense</i> perilously close to extinction and also sheds light on species conservation within limited migratory space.</p>\u0000 </div>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"34 10","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143794313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benjamin H. Glass, Angela C. Ye, Cassidy N. Hemphill, Katelyn G. Jones, Anna G. Dworetzky, Katie L. Barott
{"title":"Hypoxia Disrupts Sex-Specific Physiology and Gene Expression Leading to Decreased Fitness in the Estuarine Sea Anemone Nematostella vectensis","authors":"Benjamin H. Glass, Angela C. Ye, Cassidy N. Hemphill, Katelyn G. Jones, Anna G. Dworetzky, Katie L. Barott","doi":"10.1111/mec.17755","DOIUrl":"10.1111/mec.17755","url":null,"abstract":"<p>Coastal seawater hypoxia is increasing in temperate estuaries under global climate change, yet it is unknown how low oxygen conditions affect most estuarine species. We found that hypoxia has increased since the 1990s in an estuary hosting the sea anemone <i>Nematostella vectensis</i> (Jacques Cousteau National Estuarine Research Reserve, New Jersey, USA). Adult <i>N. vectensis</i> bred from anemones collected in this estuary exposed to three consecutive nights of hypoxia (dissolved oxygen = 0.5–1.5 mg L<sup>−1</sup> for ~12 h night<sup>−1</sup>) during gametogenesis displayed decreased aerobic respiration rates and biomass, indicating metabolic disruption. Physiological declines were correlated with changes in the expression of genes related to oxygen-dependent metabolic processes, many of which are targets of hypoxia-inducible factor 1α (HIF1α), demonstrating the activity of this transcription factor for the first time in this early-diverging metazoan. The upregulation of genes involved in the unfolded protein response and endoplasmic reticulum and Golgi apparatus homeostasis suggested that misfolded proteins contributed to disrupted physiology. Notably, these responses were more pronounced in females, demonstrating sex-specific sensitivity that was also observed in reproductive outcomes, with declines in female but not male fecundity following hypoxia exposure. However, sperm from exposed males had higher mitochondrial membrane potential, indicating altered spermatogenesis. Further, crosses performed with gametes from hypoxia-exposed adults yielded strikingly low developmental success (~2%), yet larvae that did develop displayed similar respiration rates and accelerated settlement compared to controls. Overall, hypoxia depressed fitness in <i>N. vectensis</i> by over 95%, suggesting that even stress-tolerant estuarine species may be threatened by coastal deoxygenation.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"34 9","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17755","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143794315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Freya Adele Pappert, Vincent Alexander Wüst, Carmen Fontanes Eguiguren, Olivia Roth
{"title":"Surviving on Limited Resources: Effects of Caloric Restriction on Growth, Gene Expression and Gut Microbiota in a Species With Male Pregnancy (Hippocampus erectus)","authors":"Freya Adele Pappert, Vincent Alexander Wüst, Carmen Fontanes Eguiguren, Olivia Roth","doi":"10.1111/mec.17754","DOIUrl":"10.1111/mec.17754","url":null,"abstract":"<p>Caloric restriction (CR) studies have traditionally focused on species with conventional reproductive roles, emphasising female's greater investment in costly gametes and parental care. While the divergent impact of CR on males and females is evident across species, the factors driving this variation, that is, resource allocation to reproductive elements as part of distinct life history strategies, remain unclear. To address this, we investigated the effects of CR on development, gene expression and intestinal microbiota in the lined seahorse <i>Hippocampus erectus,</i> a species with male pregnancy, where fathers invest in offspring through gestation. Juvenile seahorses were subjected to ad libitum (AL) or CR feeding for 5 months. CR stunted male growth and brood pouch development, reflecting the energy demands of this crucial parental care trait. However, condition index declined in CR females but not males, while ovarian weight remained unchanged. Transcriptome analysis demonstrated organ- and sex-specific responses to CR with distinct lipid and energy-related pathways activated in male and female livers, indicative of survival enhancement strategies. CR had minimal impact on genes associated with spermatogenesis, but downregulated lipid metabolic and inflammatory genes in ovaries, emphasising the importance of pre-copulatory resource allocation in female gametes. CR strongly shaped gut microbial composition, creating distinct communities from AL seahorses while also driving sex-specific taxonomic differences. Our research indicates that nutrient limitation's impact on males and females is influenced by their allocation of resources to reproduction and parental investment. We underscore the significance of studying species with diverse reproductive strategies, sex roles and life-history strategies.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"34 9","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17754","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143794317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Role of Meiotic Drive in Chromosome Number Disparity Between Heterosporous and Homosporous Plants.","authors":"Sylvia P Kinosian, Michael S Barker","doi":"10.1111/mec.17757","DOIUrl":"https://doi.org/10.1111/mec.17757","url":null,"abstract":"<p><p>In vascular plants, heterosporous lineages typically have fewer chromosomes than homosporous lineages. The underlying mechanism causing this disparity has been debated for over half a century. Although reproductive mode has been identified as critical to these patterns, the symmetry of meiosis during sporogenesis has been overlooked as a potential cause of the difference in chromosome numbers. In most heterosporous plants, meiosis during megasporogenesis is asymmetric, meaning one of the four meiotic products survives to become the egg. Comparatively, meiosis is symmetric in homosporous megasporogenesis and all meiotic products survive. The symmetry of meiosis is important because asymmetric meiosis enables meiotic drive and associated genomic changes, while symmetric meiosis cannot lead to meiotic drive. Meiotic drive is a deviation from Mendelian inheritance where genetic elements are preferentially inherited by the surviving egg cell, and can profoundly impact chromosome (and genome) size, structure, and number. Here we review how meiotic drive impacts chromosome number evolution in heterosporous plants, how the lack of meiotic drive in homosporous plants impacts their genomes, and explore future approaches to understand the role of meiotic drive on chromosome number across land plants.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17757"},"PeriodicalIF":4.5,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143794319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jacob R. Hopkins, Alison E. Bennett, Thomas P. McKenna
{"title":"Fire Frequency Driven Increases in Burn Heterogeneity Promote Microbial Beta Diversity: A Test of the Pyrodiversity-Biodiversity Hypothesis","authors":"Jacob R. Hopkins, Alison E. Bennett, Thomas P. McKenna","doi":"10.1111/mec.17756","DOIUrl":"10.1111/mec.17756","url":null,"abstract":"<p>Fire is a common ecological disturbance that structures terrestrial ecosystems and biological communities. The ability of fires to contribute to ecosystem heterogeneity has been termed pyrodiversity and has been directly linked to biodiversity (i.e., the pyrodiversity–biodiversity hypothesis). Since climate change models predict increases in fire frequency, understanding how fire pyrodiversity influences soil microbes is important for predicting how ecosystems will respond to fire regime changes. Here we tested how fire frequency-driven changes in burn patterns (i.e., pyrodiversity) influenced soil microbial communities and diversity. We assessed pyrodiversity effects on soil microbes by manipulating fire frequency (annual vs. biennial fires) in a tallgrass prairie restoration and evaluating how changes in burn patterns influenced microbial communities (bacteria and fungi). Annual burns produced more heterogeneous burn patterns (higher pyrodiversity) that were linked to shifts in fungal and bacterial community composition. While fire frequency did not influence microbial (bacteria and fungi) alpha diversity, beta diversity did increase with pyrodiversity. Changes in fungal community composition were not linked to burn patterns, suggesting that pyrodiversity effects on other ecosystem components (e.g., plants and soil characteristics) influenced fungal community dynamics and the greater beta diversity observed in the annually burned plots. Shifts in bacterial community composition were linked to variation in higher severity burn pattern components (grey and white ash), suggesting that thermotolerance contributed to the observed changes in bacterial community composition and lower beta diversity in the biennially burned plots. This demonstrates that fire frequency-driven increases in pyrodiversity augment biodiversity and may influence productivity in fire-prone ecosystems.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"34 10","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17756","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143787422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}