Irene de Sosa, Marta Turon, Sergi Taboada, José Lorente-Sorolla, Rosa Fernández, Natasha Tilikj, Alberto Piris, Marta Novo, Patricia Álvarez Campos, Ana Riesgo
{"title":"没有配偶,就没有问题:世界性蚯蚓Aporrectodea梯形(环节动物,Clitellata)孤雌生殖的分子机制。","authors":"Irene de Sosa, Marta Turon, Sergi Taboada, José Lorente-Sorolla, Rosa Fernández, Natasha Tilikj, Alberto Piris, Marta Novo, Patricia Álvarez Campos, Ana Riesgo","doi":"10.1111/mec.70010","DOIUrl":null,"url":null,"abstract":"<p><p>Approximately, 40% of earthworm species can reproduce by parthenogenesis. This is the case for the cosmopolitan species, Aporrectodea trapezoides, although sexual forms have been described sporadically. We analyse the genotypes and microbiomes of 30 individuals from four localities where both forms appear in order to understand the evolutionary mechanisms related to parthenogenesis. In all sites, heterozygosity values were approximately 30% higher in parthenogenetic individuals. However, we detected a stronger genomic structuring due to reproduction than to the geographical setting only in the Algerian population, underpinned by 195 loci that were related to gametogenesis, symbiont-like processes, and nitrate reduction. Similarly, statistical differences in the abundance of ZOTUs were only found between the Algerian sexual and parthenogenetic earthworms, with 754 ZOTUs that included the genus Romboutsia, which is involved in the production of nitric oxide, which enhances sperm motility. In summary, significant genomic and microbiome differences were found only between sexual and parthenogenetic lineages in a single locality. We hypothesise that obligate parthenogenesis evolved early, leaving traces at the genomic and microbiome levels in the Algerian parthenogens that were the earliest splitting lineage. Such obligate parthenogenesis was lost secondarily and individuals in the Iberian sites were facultative parthenogens, with the potential to copulate and therefore erase the genomic and microbial traces of obligate parthenogenesis. Our results indicate a hybrid origin of parthenogenesis in A. trapezoides and shed light on the complex interplay between genomic, microbiome, and reproductive mechanisms in A. trapezoides.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e70010"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12329633/pdf/","citationCount":"0","resultStr":"{\"title\":\"No Mate, No Problem: Molecular Mechanisms Involved in Parthenogenesis in the Cosmopolitan Earthworm Aporrectodea trapezoides (Annelida, Clitellata).\",\"authors\":\"Irene de Sosa, Marta Turon, Sergi Taboada, José Lorente-Sorolla, Rosa Fernández, Natasha Tilikj, Alberto Piris, Marta Novo, Patricia Álvarez Campos, Ana Riesgo\",\"doi\":\"10.1111/mec.70010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Approximately, 40% of earthworm species can reproduce by parthenogenesis. This is the case for the cosmopolitan species, Aporrectodea trapezoides, although sexual forms have been described sporadically. We analyse the genotypes and microbiomes of 30 individuals from four localities where both forms appear in order to understand the evolutionary mechanisms related to parthenogenesis. In all sites, heterozygosity values were approximately 30% higher in parthenogenetic individuals. However, we detected a stronger genomic structuring due to reproduction than to the geographical setting only in the Algerian population, underpinned by 195 loci that were related to gametogenesis, symbiont-like processes, and nitrate reduction. Similarly, statistical differences in the abundance of ZOTUs were only found between the Algerian sexual and parthenogenetic earthworms, with 754 ZOTUs that included the genus Romboutsia, which is involved in the production of nitric oxide, which enhances sperm motility. In summary, significant genomic and microbiome differences were found only between sexual and parthenogenetic lineages in a single locality. We hypothesise that obligate parthenogenesis evolved early, leaving traces at the genomic and microbiome levels in the Algerian parthenogens that were the earliest splitting lineage. Such obligate parthenogenesis was lost secondarily and individuals in the Iberian sites were facultative parthenogens, with the potential to copulate and therefore erase the genomic and microbial traces of obligate parthenogenesis. Our results indicate a hybrid origin of parthenogenesis in A. trapezoides and shed light on the complex interplay between genomic, microbiome, and reproductive mechanisms in A. trapezoides.</p>\",\"PeriodicalId\":210,\"journal\":{\"name\":\"Molecular Ecology\",\"volume\":\" \",\"pages\":\"e70010\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12329633/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/mec.70010\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.70010","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
No Mate, No Problem: Molecular Mechanisms Involved in Parthenogenesis in the Cosmopolitan Earthworm Aporrectodea trapezoides (Annelida, Clitellata).
Approximately, 40% of earthworm species can reproduce by parthenogenesis. This is the case for the cosmopolitan species, Aporrectodea trapezoides, although sexual forms have been described sporadically. We analyse the genotypes and microbiomes of 30 individuals from four localities where both forms appear in order to understand the evolutionary mechanisms related to parthenogenesis. In all sites, heterozygosity values were approximately 30% higher in parthenogenetic individuals. However, we detected a stronger genomic structuring due to reproduction than to the geographical setting only in the Algerian population, underpinned by 195 loci that were related to gametogenesis, symbiont-like processes, and nitrate reduction. Similarly, statistical differences in the abundance of ZOTUs were only found between the Algerian sexual and parthenogenetic earthworms, with 754 ZOTUs that included the genus Romboutsia, which is involved in the production of nitric oxide, which enhances sperm motility. In summary, significant genomic and microbiome differences were found only between sexual and parthenogenetic lineages in a single locality. We hypothesise that obligate parthenogenesis evolved early, leaving traces at the genomic and microbiome levels in the Algerian parthenogens that were the earliest splitting lineage. Such obligate parthenogenesis was lost secondarily and individuals in the Iberian sites were facultative parthenogens, with the potential to copulate and therefore erase the genomic and microbial traces of obligate parthenogenesis. Our results indicate a hybrid origin of parthenogenesis in A. trapezoides and shed light on the complex interplay between genomic, microbiome, and reproductive mechanisms in A. trapezoides.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms