Molecular EcologyPub Date : 2025-01-01Epub Date: 2024-11-21DOI: 10.1111/mec.17593
Connor M French, Roberta P Damasceno, Mariana M Vasconcellos, Miguel T Rodrigues, Ana C Carnaval, Michael J Hickerson
{"title":"Elevational Range Impacts Connectivity and Predicted Deme Sizes From Models of Habitat Suitability.","authors":"Connor M French, Roberta P Damasceno, Mariana M Vasconcellos, Miguel T Rodrigues, Ana C Carnaval, Michael J Hickerson","doi":"10.1111/mec.17593","DOIUrl":"10.1111/mec.17593","url":null,"abstract":"<p><p>In integrative distributional, demographic and coalescent (iDDC) modelling, a critical component is the statistical relationship between habitat suitability and local population sizes. This study explores this relationship in two Enyalius lizard species from the Brazilian Atlantic Forest: the high-elevation E. iheringii and low-elevation E. catenatus and how this transformation affects spatiotemporal demographic inference. Most previous iDDC studies assumed a linear relationship, but this study hypothesises that the relationship may be nonlinear, especially for high-elevation species with broader environmental tolerances. We test two key hypotheses: (1) The habitat suitability to population size relationship is nonlinear for E. iheringii (high-elevation) and linear for E. catenatus (low-elevation); and (2) E. iheringii exhibits higher effective migration across populations than E. catenatus. Our findings provide clear support for hypothesis (2), but mixed support for hypothesis (1), with strong model support for a nonlinear transformation in the high-elevation E. iheringii and some (albeit weak) support for a nonlinear transformation also in E. catenatus. The iDDC models allow us to generate landscape-wide maps of predicted genetic diversity for both species, revealing that genetic diversity predictions for the high-elevation E. iheringii align with estimated patterns of historical range stability, whereas predictions for low-elevation E. catenatus are distinct from range-wide stability predictions. This research highlights the importance of accurately modelling the habitat suitability to population size relationship in iDDC studies, contributing to our understanding of species' demographic responses to environmental changes.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17593"},"PeriodicalIF":4.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular EcologyPub Date : 2025-01-01Epub Date: 2024-11-14DOI: 10.1111/mec.17572
Sean M Keogh, Nathan A Johnson, Chase H Smith, Bernard E Sietman, Jeffrey T Garner, Charles R Randklev, Andrew M Simons
{"title":"Secondary contact erodes Pleistocene diversification in a wide-ranging freshwater mussel (Quadrula).","authors":"Sean M Keogh, Nathan A Johnson, Chase H Smith, Bernard E Sietman, Jeffrey T Garner, Charles R Randklev, Andrew M Simons","doi":"10.1111/mec.17572","DOIUrl":"10.1111/mec.17572","url":null,"abstract":"<p><p>The isolated river drainages of eastern North America serve as a natural laboratory to investigate the roles of allopatry and secondary contact in the evolutionary trajectories of recently diverged lineages. Drainage divides facilitate allopatric speciation, but due to their sensitivity to climatic and geomorphological changes, neighboring rivers frequently coalesce, creating recurrent opportunities of isolation and contact throughout the history of aquatic lineages. The freshwater mussel Quadrula quadrula is widely distributed across isolated rivers of eastern North America and possesses high phenotypic and molecular variation across its range. We integrate sequence data from three genomes, including female- and male-inherited mitochondrial markers and thousands of nuclear encoded SNPs with morphology and geography to illuminate the group's divergence history. Across contemporary isolated rivers, we found continuums of molecular and morphological variation, following a pattern of isolation by distance. In contact zones, hybridization was frequent with no apparent fitness consequences, as advanced hybrids were common. Accordingly, we recognize Q. quadrula as a single cohesive species with subspecific variation (Q. quadrula rumphiana). Demographic modeling and divergence dating supported a divergence history characterized by allopatric vicariance followed by secondary contact, likely driven by river rearrangements and Pleistocene glacial cycles. Despite clinal range-wide variation and hybridization in contact zones, the process-based species delimitation tool delimitR, which considers demographic scenarios like secondary contact, supported the delimitation of the maximum number of species tested. As such, when interpreting species delimitation results, we suggest careful consideration of spatial sampling and subsequent geographic patterns of biological variation, particularly for wide-ranging taxa.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17572"},"PeriodicalIF":4.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular EcologyPub Date : 2025-01-01Epub Date: 2024-11-14DOI: 10.1111/mec.17587
Tsering C L Chan, Boris Yagound, Gregory P Brown, Harrison J F Eyck, Richard Shine, Lee A Rollins
{"title":"Infection by the Lungworm Rhabdias pseudosphaerocephala Affects the Expression of Immune-Related microRNAs by Its Co-Evolved Host, the Cane Toad Rhinella marina.","authors":"Tsering C L Chan, Boris Yagound, Gregory P Brown, Harrison J F Eyck, Richard Shine, Lee A Rollins","doi":"10.1111/mec.17587","DOIUrl":"10.1111/mec.17587","url":null,"abstract":"<p><p>Parasites may suppress the immune function of infected hosts using microRNAs (miRNAs) to prevent protein production. Nonetheless, little is known about the diversity of miRNAs and their mode(s) of action. In this study, we investigated the effects of infection by a parasitic lungworm (Rhabdias pseudosphaerocephala) on miRNA and mRNA expression of its host, the invasive cane toad (Rhinella marina). To investigate the cane toad's innate and adaptive immune response to this parasite, we compared miRNA and mRNA expression in naïve toads that had never been infected by lungworms to toads that were infected with lungworms for the first time in their lives, and toads that were infected the second time in their lives (i.e., had two consecutive infections). In total, we identified 101 known miRNAs and 86 potential novel miRNAs. Compared to uninfected and single-infection toads, multiple-infection animals drastically downregulated three miRNAs. These miRNAs were associated with gene pathways related to the immune response, potentially reflecting the immunosuppression of cane toads by their parasites. Infected hosts did not respond with substantially differential mRNA transcription; only one gene was differentially expressed between control and single-infection hosts. Our study suggests that miRNA may play an important role in mediating host-parasite interactions in a system in which an ongoing range expansion by the host has generated substantial divergence in host-parasite interactions.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17587"},"PeriodicalIF":4.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular EcologyPub Date : 2025-01-01Epub Date: 2024-11-11DOI: 10.1111/mec.17588
Eliza I Gilbert, Tracy A Diver, Steven M Mussmann, Melody J Saltzgiver, William K Knight, Scott L Durst, Michael A Farrington, Stephani L Clark Barkalow, Michael Tobler, Nathan R Franssen
{"title":"Why Is It Too Cold? Towards a Mechanistic Understanding of Cold-Water Pollution Effects on Recruitment of an Imperiled Warmwater Fish.","authors":"Eliza I Gilbert, Tracy A Diver, Steven M Mussmann, Melody J Saltzgiver, William K Knight, Scott L Durst, Michael A Farrington, Stephani L Clark Barkalow, Michael Tobler, Nathan R Franssen","doi":"10.1111/mec.17588","DOIUrl":"10.1111/mec.17588","url":null,"abstract":"<p><p>Environmental temperature shapes the ontogeny of ectotherms by influencing rates of growth and development which can be key determinants of survival. Whereas the escalating impacts of water management on freshwater ecosystems is well documented, the effects of cold-water releases from dams-which can alter downstream temperatures-remains relatively underexplored but may present novel challenges to endemic ectotherms. Specifically, little is known about how thermal depressions reshape phenotypic and genetic patterns during larval metamorphosis for fishes that evolved in warmwater systems. We assessed the effects of thermal shifts on larval ontogeny of the endangered razorback sucker (Xyrauchen texanus), which evolved in the warm waters of the Colorado River Basin, USA. We hypothesised that development is more sensitive to cold-water influences than growth and that temperature would influence patterns in gene expression related to development. Our results supported these hypotheses and showed that both wild and laboratory-reared larvae in slightly cooler temperatures exhibited delayed development, but similar growth compared to larvae reared in warmer conditions. These findings suggest growth and development in early ectotherm life stages can be decoupled, which follows patterns more like the temperature-size rule than allometric scaling of development by size. We also observed transcriptional differences related to genes associated with stress responses and development in our laboratory-reared fish; here, gene expression of fish from the coldest conditions at the end of the experiment was more similar to fish reared in warmer temperatures at the midpoint. Our findings suggest that modest temperature reductions can delay ontogeny and alter the transcriptional landscape while not necessarily limiting growth. This finding highlights the need for conservation practitioners to consider cascading impacts that even small temperature reductions can cause in riverine ecosystems.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17588"},"PeriodicalIF":4.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular EcologyPub Date : 2025-01-01Epub Date: 2024-11-15DOI: 10.1111/mec.17594
Ying Chen, Song Tan, Qiwei Xu, Jinzhong Fu, Yin Qi, Xia Qiu, Weizhao Yang
{"title":"Genomic Architecture Underlying the Striking Colour Variation in the Presence of Gene Flow for the Guinan Toad-Headed Lizard.","authors":"Ying Chen, Song Tan, Qiwei Xu, Jinzhong Fu, Yin Qi, Xia Qiu, Weizhao Yang","doi":"10.1111/mec.17594","DOIUrl":"10.1111/mec.17594","url":null,"abstract":"<p><p>How divergence occurs between closely related organisms in the absence of geographic barriers to gene flow stands as one of the long-standing questions in evolutionary biology. Previous studies suggested that the interplay between selection, gene flow and recombination strongly affected the process of divergence with gene flow. However, the extent to which these forces interact to drive divergence remains largely ambiguous. Guinan toad-headed lizards (Phrynocephalus guinanensis) in the Mugetan Desert exhibit striking colour differences from lizards outside the desert and provide an excellent model to address this question. Through extensive sampling and whole genome sequencing, we obtained genotypes for 191 samples from 14 populations inside and outside the desert. Despite the colour differences, continuous and asymmetric gene flow was detected across the desert border. More importantly, 273 highly diverged regions (HDRs) were identified between them, accounting only for 0.47% of the genome but widely distributed across 20 (out of the total 24) chromosomes. Strong signatures of selection were identified in HDRs, and local recombination rates were repressed. Furthermore, five HDRs exhibited significantly higher divergence, which contained key genes associated with crucial functions in animal coloration, including pteridine and melanocyte pigmentation. Genes related to retinal cells and steroid hormones were identified in other HDRs, which might have also contributed to the formation of colour variation in the presence of gene flow. This study provided novel insights into the understanding of the evolutionary mechanisms of genetic divergence in the presence of gene flow.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17594"},"PeriodicalIF":4.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular EcologyPub Date : 2025-01-01Epub Date: 2024-11-05DOI: 10.1111/mec.17581
Kamil Konowalik, Salvatore Tomasello, Jacek Urbaniak
{"title":"Genetic Diversity and Ecogeographical Niche Overlap Among Hybridising Ox-Eye Daisies (Leucanthemum, Asteraceae) in the Carpathian Mountains: The Impact of Anthropogenic Disturbances.","authors":"Kamil Konowalik, Salvatore Tomasello, Jacek Urbaniak","doi":"10.1111/mec.17581","DOIUrl":"10.1111/mec.17581","url":null,"abstract":"<p><p>Climate change and human influence are transforming mountain ecosystems, significantly impacting species distributions and biodiversity. Among these changes, the upward migration of lowland species into mountain regions stands out. This study examines the ecogeographical niche overlap and genetic diversity among three Leucanthemum species distributed along an altitudinal gradient in the Carpathian Mountains: the lowland L. ircutianum (4x), the montane L. rotundifolium (2x) and the alpine L. gaudinii (2x). By genotyping over 600 individuals using SNP analysis, followed by principal coordinate analysis (PCoA), Neighbour-Net Network and Structure clustering, we reveal not just distinct genetic groups but also hybridisation across all species, suggesting the potential for triple hybrids. Genetic admixture is further supported by environmental background and niche overlap analyses that reveal substantial overlap among species, particularly in line with their vertical distribution. Climate envelope plots indicate a likely reduction in available habitat for mountainous species due to climate change, leading to an increase in competition and an intensification of hybridisation. Anthropogenic influences are further intensifying these hybridisation trends. Among the studied species, L. gaudinii is most at risk of overwhelming hybridisation, whereas L. ircutianum may experience habitat expansion. By providing a comprehensive genetic and ecological overview, our research highlights the significance of hybridisation in biodiversity conservation and the challenges posed by environmental changes and anthropogenic activities in mountain environments. This study not only contributes to the understanding of genetic diversity in the Carpathians but also underscores the broader implications for molecular ecology and conservation strategies in mountain ecosystems.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17581"},"PeriodicalIF":4.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular EcologyPub Date : 2025-01-01Epub Date: 2024-11-12DOI: 10.1111/mec.17586
Ian Will, Emily J Stevens, Thomas Belcher, Kayla C King
{"title":"'Re-Wilding' an Animal Model With Microbiota Shifts Immunity and Stress Gene Expression During Infection.","authors":"Ian Will, Emily J Stevens, Thomas Belcher, Kayla C King","doi":"10.1111/mec.17586","DOIUrl":"10.1111/mec.17586","url":null,"abstract":"<p><p>The frequency of emerging disease is growing with ongoing human activity facilitating new host-pathogen interactions. Novel infection outcomes can also be shaped by the host microbiota. Caenorhabditis elegans nematodes experimentally colonised by a wild microbiota community and infected by the widespread animal pathogen, Staphylococcus aureus, have been shown to suffer higher mortality than those infected by the pathogen alone. Understanding the host responses to such microbiota-pathogen ecological interactions is key to pinpointing the mechanism underlying severe infection outcomes. We conducted transcriptomic analyses of C. elegans colonised by its native microbiota, S. aureus and both in combination. Correlations between altered collagen gene expression and heightened mortality in co-colonised hosts suggest the microbiota modified host resistance to infection. Furthermore, microbiota colonised hosts showed increased expression of immunity genes and variable expression of stress response genes during infection. Changes in host immunity and stress response could encompass both causes and effects of severe infection outcomes. 'Re-wilding' this model nematode host with its native microbiota indicated that typically commensal microbes can mediate molecular changes in the host that are costly when challenged by a novel emerging pathogen.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17586"},"PeriodicalIF":4.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular EcologyPub Date : 2025-01-01Epub Date: 2024-11-22DOI: 10.1111/mec.17592
Thomas A A Prowse, Aysegul Birand, Danielle Stephens, Andrew P Woolnough
{"title":"Genetic Monitoring of a Lethal Control Programme for Wild Canids With Complex Mating Strategies.","authors":"Thomas A A Prowse, Aysegul Birand, Danielle Stephens, Andrew P Woolnough","doi":"10.1111/mec.17592","DOIUrl":"10.1111/mec.17592","url":null,"abstract":"<p><p>Although mammalian carnivores are ecologically important, they also drive human-wildlife conflicts. Managing carnivores using lethal control is controversial, in part because the impact of control effort is often uncertain due to limited abundance monitoring. We used an Australian metapopulation of wild dogs as a model system to investigate the feasibility of monitoring effective population size ( <math> <semantics> <mrow><msub><mi>N</mi> <mi>e</mi></msub> </mrow> </semantics> </math> ) to detect reductions in census population size ( <math> <semantics> <mrow><msub><mi>N</mi> <mi>c</mi></msub> </mrow> </semantics> </math> ) following control. Based on microsatellite data collected over an 11-year period, we parameterised an individual-based spatial population model for wild dogs that integrated demography, genetics, random or hierarchical mating, dispersal between subpopulations and compensatory immigration. <math> <semantics> <mrow><msub><mi>N</mi> <mi>c</mi></msub> </mrow> </semantics> </math> and <math> <semantics> <mrow> <msub><mover><mi>N</mi> <mo>̂</mo></mover> <mi>e</mi></msub> </mrow> </semantics> </math> trajectories were simulated under different proportional culling rates and genetic sampling regimes. We also used simulations without culling as null models to define 95% critical values for assessing the significance of empirical changes in <math> <semantics> <mrow> <msub><mover><mi>N</mi> <mo>̂</mo></mover> <mi>e</mi></msub> </mrow> </semantics> </math> over time. We concluded there were significant reductions (39%-62%) in <math> <semantics> <mrow> <msub><mover><mi>N</mi> <mo>̂</mo></mover> <mi>e</mi></msub> </mrow> </semantics> </math> in each subpopulation of the wild dog metapopulation, mostly likely due to control. In simulations assuming a hierarchical rather than random mating system, the impact of control on <math> <semantics> <mrow><msub><mi>N</mi> <mi>c</mi></msub> </mrow> </semantics> </math> was weakened because reproduction by subordinate individuals increased as dominant individuals were removed, yet <math> <semantics> <mrow> <msub><mover><mi>N</mi> <mo>̂</mo></mover> <mi>e</mi></msub> </mrow> </semantics> </math> reduced following culling. Sensitivity analyses demonstrated that <math> <semantics> <mrow> <msub><mover><mi>N</mi> <mo>̂</mo></mover> <mi>e</mi></msub> </mrow> </semantics> </math> becomes an unreliable proxy of <math> <semantics> <mrow><msub><mi>N</mi> <mi>c</mi></msub> </mrow> </semantics> </math> when compensatory immigration is strong and compensatory reproduction is weak, in which case <math> <semantics> <mrow> <msub><mover><mi>N</mi> <mo>̂</mo></mover> <mi>e</mi></msub> </mrow> </semantics> </math> can increase following culling due to the immigration of new genotypes. Nonetheless, our results suggest <math> <semantics> <mrow> <msub><mover><mi>N</mi> <mo>̂</mo></mover> <mi>e</mi></msub> </mrow> </semantics> </math> can provide information about wild dog <math> <semantics> <mrow><msub><mi>N</mi> <mi>c","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17592"},"PeriodicalIF":4.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142692179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular EcologyPub Date : 2025-01-01Epub Date: 2024-12-03DOI: 10.1111/mec.17596
P A Pérez-Ferrer, M Ashraf, M Rodrigues, J Troncoso, M K Nishiguchi
{"title":"Genetic Variation in the Atlantic Bobtail Squid-Vibrio Symbiosis From the Galician Rías.","authors":"P A Pérez-Ferrer, M Ashraf, M Rodrigues, J Troncoso, M K Nishiguchi","doi":"10.1111/mec.17596","DOIUrl":"10.1111/mec.17596","url":null,"abstract":"<p><p>Symbiotic marine bacteria that are transmitted through the environment are susceptible to abiotic factors (salinity, temperature, physical barriers) that can influence their ability to colonize their specific hosts. Given that many symbioses are driven by host specificity, environmentally transmitted symbionts are more susceptible to extrinsic factors depending on conditions over space and time. In order to determine whether the population structure of environmentally transmitted symbionts reflects host specificity or biogeography, we analysed the genetic structure of Sepiola atlantica (Cephalopoda: Sepiolidae) and their Vibrio symbionts (V. fischeri and V. logei) in four Galician Rías (Spain). This geographical location is characterized by a jagged coastline with a deep-sea entrance into the land, ideal for testing whether such population barriers exist due to genetic isolation. We used haplotype estimates combined with nested clade analysis to determine the genetic relatedness for both S. atlantica and Vibrio bacteria. Analyses of molecular variance (AMOVA) were used to estimate variation within and between populations for both host and symbiont genetic data. Our analyses reveal a low percentage of variation among and between host populations, suggesting that these populations are panmictic. In contrast, Vibrio symbiont populations show certain degree of genetic structure, demonstrating that the hydrology of the rías is driving bacterial distribution (and not host specificity). Thus, for environmentally transmitted symbioses such as the sepiolid squid-Vibrio association, abiotic factors can be a major selective force for determining population structure for one of the partners.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17596"},"PeriodicalIF":4.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142764768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular EcologyPub Date : 2025-01-01Epub Date: 2024-11-19DOI: 10.1111/mec.17591
Josephine R Paris, R Andrew King, Joan Ferrer Obiol, Sophie Shaw, Anke Lange, Vincent Bourret, Patrick B Hamilton, Darren Rowe, Lauren V Laing, Audrey Farbos, Karen Moore, Mauricio A Urbina, Ronny van Aerle, Julian M Catchen, Rod W Wilson, Nicolas R Bury, Eduarda M Santos, Jamie R Stevens
{"title":"The Genomic Signature and Transcriptional Response of Metal Tolerance in Brown Trout Inhabiting Metal-Polluted Rivers.","authors":"Josephine R Paris, R Andrew King, Joan Ferrer Obiol, Sophie Shaw, Anke Lange, Vincent Bourret, Patrick B Hamilton, Darren Rowe, Lauren V Laing, Audrey Farbos, Karen Moore, Mauricio A Urbina, Ronny van Aerle, Julian M Catchen, Rod W Wilson, Nicolas R Bury, Eduarda M Santos, Jamie R Stevens","doi":"10.1111/mec.17591","DOIUrl":"10.1111/mec.17591","url":null,"abstract":"<p><p>Industrial pollution is a major driver of ecosystem degradation, but it can also act as a driver of contemporary evolution. As a result of intense mining activity during the Industrial Revolution, several rivers across the southwest of England are polluted with high concentrations of metals. Despite the documented negative impacts of ongoing metal pollution, brown trout (Salmo trutta L.) survive and thrive in many of these metal-impacted rivers. We used population genomics, transcriptomics, and metal burdens to investigate the genomic and transcriptomic signatures of potential metal tolerance. RADseq analysis of six populations (originating from three metal-impacted and three control rivers) revealed strong genetic substructuring between impacted and control populations. We identified selection signatures at 122 loci, including genes related to metal homeostasis and oxidative stress. Trout sampled from metal-impacted rivers exhibited significantly higher tissue concentrations of cadmium, copper, nickel and zinc, which remained elevated after 11 days in metal-free water. After depuration, we used RNAseq to quantify gene expression differences between metal-impacted and control trout, identifying 2042 differentially expressed genes (DEGs) in the gill, and 311 DEGs in the liver. Transcriptomic signatures in the gill were enriched for genes involved in ion transport processes, metal homeostasis, oxidative stress, hypoxia, and response to xenobiotics. Our findings reveal shared genomic and transcriptomic pathways involved in detoxification, oxidative stress responses and ion regulation. Overall, our results demonstrate the diverse effects of metal pollution in shaping both neutral and adaptive genetic variation, whilst also highlighting the potential role of constitutive gene expression in promoting metal tolerance.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17591"},"PeriodicalIF":4.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}