Joint Estimation of Paternity, Sibships and Pollen Dispersal in a Snapdragon Hybrid Zone

IF 3.9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Thomas James Ellis, David Luke Field, Nicholas H. Barton
{"title":"Joint Estimation of Paternity, Sibships and Pollen Dispersal in a Snapdragon Hybrid Zone","authors":"Thomas James Ellis,&nbsp;David Luke Field,&nbsp;Nicholas H. Barton","doi":"10.1111/mec.70051","DOIUrl":null,"url":null,"abstract":"<p>Inferring genealogical relationships of wild populations is useful because it gives direct estimates of mating patterns and variance in reproductive success. Inference can be improved by including information about parentage shared between siblings, or by modelling phenotypes or population data related to mating. However, we currently lack a framework to infer parent–offspring relationships, sibships and population parameters in a single analysis. To address this, we here extend a previous method, Fractional Analysis of Paternity and Sibships, to include population data for the case where one parent is known. We illustrate this with the example of pollen dispersal in a natural hybrid zone population of the snapdragon <i>Antirrhinum majus</i>. Pollen dispersal is leptokurtic, with half of mating events occurring within 30 m, but with a long tail of mating events up to 859 m. Using simulations, we find that both sibship and population information substantially improve pedigree reconstruction, and that we can expect to resolve median dispersal distances with high accuracy.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"34 18","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.70051","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mec.70051","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Inferring genealogical relationships of wild populations is useful because it gives direct estimates of mating patterns and variance in reproductive success. Inference can be improved by including information about parentage shared between siblings, or by modelling phenotypes or population data related to mating. However, we currently lack a framework to infer parent–offspring relationships, sibships and population parameters in a single analysis. To address this, we here extend a previous method, Fractional Analysis of Paternity and Sibships, to include population data for the case where one parent is known. We illustrate this with the example of pollen dispersal in a natural hybrid zone population of the snapdragon Antirrhinum majus. Pollen dispersal is leptokurtic, with half of mating events occurring within 30 m, but with a long tail of mating events up to 859 m. Using simulations, we find that both sibship and population information substantially improve pedigree reconstruction, and that we can expect to resolve median dispersal distances with high accuracy.

Abstract Image

金鱼龙杂交带父系、兄弟姐妹和花粉传播的联合估计。
推断野生种群的家谱关系是有用的,因为它可以直接估计交配模式和繁殖成功的差异。可以通过包括兄弟姐妹之间共享的亲缘关系信息,或通过建模表型或与交配相关的种群数据来改进推断。然而,我们目前缺乏一个框架来推断亲子关系,兄弟姐妹和种群参数在一个单一的分析。为了解决这个问题,我们在这里扩展了以前的方法,父权和兄弟关系的分数分析,以包括已知父母一方的情况下的人口数据。我们以自然杂交区金鱼金鱼种群花粉传播的例子来说明这一点。花粉传播呈细尾分布,半数交配事件发生在30米以内,但交配事件的长尾分布可达859米。通过模拟,我们发现兄弟姐妹和种群信息都大大改善了谱系重建,并且我们可以期望以高精度解决中位数分散距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Ecology
Molecular Ecology 生物-进化生物学
CiteScore
8.40
自引率
10.20%
发文量
472
审稿时长
1 months
期刊介绍: Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include: * population structure and phylogeography * reproductive strategies * relatedness and kin selection * sex allocation * population genetic theory * analytical methods development * conservation genetics * speciation genetics * microbial biodiversity * evolutionary dynamics of QTLs * ecological interactions * molecular adaptation and environmental genomics * impact of genetically modified organisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信