Thomas James Ellis, David Luke Field, Nicholas H. Barton
{"title":"Joint Estimation of Paternity, Sibships and Pollen Dispersal in a Snapdragon Hybrid Zone","authors":"Thomas James Ellis, David Luke Field, Nicholas H. Barton","doi":"10.1111/mec.70051","DOIUrl":null,"url":null,"abstract":"<p>Inferring genealogical relationships of wild populations is useful because it gives direct estimates of mating patterns and variance in reproductive success. Inference can be improved by including information about parentage shared between siblings, or by modelling phenotypes or population data related to mating. However, we currently lack a framework to infer parent–offspring relationships, sibships and population parameters in a single analysis. To address this, we here extend a previous method, Fractional Analysis of Paternity and Sibships, to include population data for the case where one parent is known. We illustrate this with the example of pollen dispersal in a natural hybrid zone population of the snapdragon <i>Antirrhinum majus</i>. Pollen dispersal is leptokurtic, with half of mating events occurring within 30 m, but with a long tail of mating events up to 859 m. Using simulations, we find that both sibship and population information substantially improve pedigree reconstruction, and that we can expect to resolve median dispersal distances with high accuracy.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"34 18","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.70051","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mec.70051","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Inferring genealogical relationships of wild populations is useful because it gives direct estimates of mating patterns and variance in reproductive success. Inference can be improved by including information about parentage shared between siblings, or by modelling phenotypes or population data related to mating. However, we currently lack a framework to infer parent–offspring relationships, sibships and population parameters in a single analysis. To address this, we here extend a previous method, Fractional Analysis of Paternity and Sibships, to include population data for the case where one parent is known. We illustrate this with the example of pollen dispersal in a natural hybrid zone population of the snapdragon Antirrhinum majus. Pollen dispersal is leptokurtic, with half of mating events occurring within 30 m, but with a long tail of mating events up to 859 m. Using simulations, we find that both sibship and population information substantially improve pedigree reconstruction, and that we can expect to resolve median dispersal distances with high accuracy.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms