Respiratory Physiology & Neurobiology最新文献

筛选
英文 中文
Glycolytic metabolism modulation on spinal neuroinflammation and vital functions following cervical spinal cord injury 糖酵解代谢调节对颈脊髓损伤后脊髓神经炎症和生命功能的影响。
IF 1.9 4区 医学
Respiratory Physiology & Neurobiology Pub Date : 2025-02-01 DOI: 10.1016/j.resp.2024.104383
Pauline Michel-Flutot , Arnaud Mansart , Stéphane Vinit
{"title":"Glycolytic metabolism modulation on spinal neuroinflammation and vital functions following cervical spinal cord injury","authors":"Pauline Michel-Flutot ,&nbsp;Arnaud Mansart ,&nbsp;Stéphane Vinit","doi":"10.1016/j.resp.2024.104383","DOIUrl":"10.1016/j.resp.2024.104383","url":null,"abstract":"<div><div>High spinal cord injuries (SCIs) often result in persistent diaphragm paralysis and respiratory dysfunction. Chronic neuroinflammation within the damaged spinal cord after injury plays a prominent role in limiting functional recovery by impeding neuroplasticity. In this study, we aimed to reduce glucose metabolism that supports neuroinflammatory processes in an acute preclinical model of C2 spinal cord lateral hemisection in rats. We administered 2-deoxy-D-glucose (2-DG; 200 mg/kg/day s.c., for 7 days) and evaluated the effect on respiratory function and chondroitin sulfate proteoglycans (CSPGs) production around spinal phrenic motoneurons. Contrary to our initial hypothesis, our 2-DG treatment did not have any effect on diaphragm activity and CSPGs production in injured rats, although slight increases in tidal volume were observed. Unexpectedly, it led to deleterious effects in uninjured (sham) animals, characterized by increased ventilation and CSPGs production. Ultimately, our results seem to indicate that this 2-DG treatment paradigm may create a neuroinflammatory state in healthy animals, without affecting the already established spinal inflammation in injured rats.</div></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"332 ","pages":"Article 104383"},"PeriodicalIF":1.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142791594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The acute effect of bilateral cathodic transcranial direct current stimulation on respiratory muscle strength and endurance 双侧阴极经颅直流电刺激对呼吸肌力量和耐力的急性影响。
IF 1.9 4区 医学
Respiratory Physiology & Neurobiology Pub Date : 2025-02-01 DOI: 10.1016/j.resp.2024.104382
Elder Nascimento Pereira , Fernando Zanela da Silva Arêas , Swyanne Rosenete Scantelbury Neves Tavares , Beatriz Campelo Monteiro , Ellem Nara Tananta Dantas , Renato Campos Freire Jr , Cassia da Luz Goulart , Fernando de Almeida Val , Jorge Henriques , Guilherme Peixoto Tinoco Arêas
{"title":"The acute effect of bilateral cathodic transcranial direct current stimulation on respiratory muscle strength and endurance","authors":"Elder Nascimento Pereira ,&nbsp;Fernando Zanela da Silva Arêas ,&nbsp;Swyanne Rosenete Scantelbury Neves Tavares ,&nbsp;Beatriz Campelo Monteiro ,&nbsp;Ellem Nara Tananta Dantas ,&nbsp;Renato Campos Freire Jr ,&nbsp;Cassia da Luz Goulart ,&nbsp;Fernando de Almeida Val ,&nbsp;Jorge Henriques ,&nbsp;Guilherme Peixoto Tinoco Arêas","doi":"10.1016/j.resp.2024.104382","DOIUrl":"10.1016/j.resp.2024.104382","url":null,"abstract":"<div><h3>Introduction</h3><div>Transcranial direct current stimulation (tDCS) is a non-invasive technique with therapeutic potential, especially in respiratory muscle training (RMT) in pathological conditions such as chronic obstructive pulmonary disease and heart failure.</div></div><div><h3>Objective</h3><div>To evaluate the effect of bilateral cathodic tDCS on respiratory muscle strength and endurance in healthy young and elderly women.</div></div><div><h3>Methods</h3><div>An experimental, randomized study with 80 participants divided into young and old women, subdivided into intervention and sham control groups. The participants were evaluated by spirometry and dynamic muscle strength tests before and after the one session intervention. tDCS was applied with cathode electrodes positioned bilaterally in the motor area.</div></div><div><h3>Results</h3><div>The elderly women in the intervention group showed significant improvement in dynamic inspiratory muscle strength (S-Index) and dominant hand strength, with moderate to large effect sizes. The young women showed a significant increase only in the strength of the dominant hand, with no improvement in inspiratory muscle strength. There were no significant differences in ventilatory parameters, including Maximal Ventilatory Capacity, in any of the age groups.</div></div><div><h3>Conclusion</h3><div>Bilateral cathodic tDCS was effective in increasing dynamic inspiratory muscle strength and dominant hand strength in elderly women, with more pronounced effects compared to young women. The technique did not produce significant changes in maximal ventilatory capacity in any of the age groups, suggesting that the response to tDCS may vary with age, being more beneficial in elderly women.</div></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"332 ","pages":"Article 104382"},"PeriodicalIF":1.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142847539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Breathlessness dimensions should be evaluated in relation to the level of exertion: A clinical study 评估呼吸困难程度时应考虑用力程度:一项临床研究。
IF 1.9 4区 医学
Respiratory Physiology & Neurobiology Pub Date : 2025-01-25 DOI: 10.1016/j.resp.2025.104398
Viktor Elmberg , Gufran Ali , David Gustafsson , Dennis Jensen , Magnus Ekström
{"title":"Breathlessness dimensions should be evaluated in relation to the level of exertion: A clinical study","authors":"Viktor Elmberg ,&nbsp;Gufran Ali ,&nbsp;David Gustafsson ,&nbsp;Dennis Jensen ,&nbsp;Magnus Ekström","doi":"10.1016/j.resp.2025.104398","DOIUrl":"10.1016/j.resp.2025.104398","url":null,"abstract":"<div><h3>Background/aim</h3><div>Exertional breathlessness is a dominating symptom in cardiorespiratory disease, limiting exercise capacity. Multidimensional measurement has been proposed to capture breathlessness, but it is unknown whether it is useful to differentiate people with abnormal vs normal exertional breathlessness intensity.</div></div><div><h3>Methods</h3><div>This was a secondary analysis of a randomized controlled trial of outpatients aged ≥ 18 years performing a symptom-limited cycle incremental exercise test (IET). Breathlessness sensations at end of IET were identified using the multidimensional dyspnea profile (MDP) 30-min post-exercise and compared between people with abnormally high breathlessness (Borg 0–10 rating &gt; upper limit of normal [ULN]) and people within normal ranges (≤ ULN) in relation to the percentage of predicted peak power output defined by normative reference equations.</div></div><div><h3>Results</h3><div>Of 92 participants, 20 (22 %) had abnormally high breathlessness. Compared with those with normal breathlessness (n = 72 [78 %]), the abnormal group reported higher symptom intensity at peak exercise (7.9 ± 1.7 vs 6.3 ± 1.4 Borg units; p &lt; 0.001) and had lower peak power output 129 ± 52 W vs 167 ± 55 W; p &lt; 0.001). Differences between those with normal, and abnormal exertional breathlessness regarding MDP ratings were not statistically significant (all p &gt; 0.05): overall unpleasantness, 4.1 ± 2.3 vs 4.7 ± 1.6; immediate perception, 10.9 ± 2.8 vs 11.5 ± 1.8; and emotional response, 4.1 ± 7.6 vs 3.2 ± 7.5. MDP ratings had no relation to peak power output.</div></div><div><h3>Conclusion</h3><div>Breathlessness dimensions are similar at the peak of a standardized IET and cannot differentiate between people with normal and abnormally high exertional breathlessness.</div></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"333 ","pages":"Article 104398"},"PeriodicalIF":1.9,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143053392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A computational fluid dynamics analysis of BiPAP pressure settings on airway biomechanics using a CT-based respiratory tract model 基于ct呼吸道模型的BiPAP压力设置对气道生物力学的计算流体动力学分析。
IF 1.9 4区 医学
Respiratory Physiology & Neurobiology Pub Date : 2025-01-16 DOI: 10.1016/j.resp.2025.104397
Xinlei Huang , Goutam Saha , Akshoy Ranjan Paul , Adele Tahan , Suvash C. Saha
{"title":"A computational fluid dynamics analysis of BiPAP pressure settings on airway biomechanics using a CT-based respiratory tract model","authors":"Xinlei Huang ,&nbsp;Goutam Saha ,&nbsp;Akshoy Ranjan Paul ,&nbsp;Adele Tahan ,&nbsp;Suvash C. Saha","doi":"10.1016/j.resp.2025.104397","DOIUrl":"10.1016/j.resp.2025.104397","url":null,"abstract":"<div><div>Central and Obstructive Sleep Apnea (CSA and OSA), Chronic Obstructive Pulmonary Disease (COPD), and Obesity Hypoventilation Syndrome (OHS) disrupt breathing patterns, posing significant health risks and reducing the quality of life. Bilevel Positive Airway Pressure (BiPAP) therapy offers adjustable inhalation and exhalation pressures, potentially enhancing treatment adaptability for the above diseases. This is the first-ever study that employs Computational Fluid Dynamics (CFD) to examine the biomechanical impacts of BiPAP under four settings: Inspiratory Positive Airway Pressure (IPAP)/Expiratory Positive Airway Pressure (EPAP) of 12/8, 16/6, and 18/8 cmH<sub>2</sub>O, compared to a without-BiPAP scenario of zero-gauge pressure. Utilizing a computed-tomography-based respiratory tract model from the nasal cavity extending to the 13th generation, we analyzed parameters such as static pressure, shear stress, and airway wall normal force across different airway regions. Our results indicate that BiPAP, particularly at higher IPAP settings, effectively increases static pressure, thereby improving airway patency and potentially reducing the risk of airway collapse in both CSA and OSA. Lower EPAP, on the other hand, helps reduce the work of breathing during exhalation, which is particularly useful for patients who have difficulty exhaling against higher pressures or need to exhale CO<sub>2</sub> more effectively. This comparative analysis confirms that BiPAP not only maintains open airways but does so with an adjustable approach that can be used for the specific needs of patients with various respiratory dysfunctions, thereby offering a versatile and effective treatment option.</div></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"333 ","pages":"Article 104397"},"PeriodicalIF":1.9,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143010685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characteristics of brain network after cardiopulmonary phase synchronization enhancement 心肺相同步增强后脑网络的特征。
IF 1.9 4区 医学
Respiratory Physiology & Neurobiology Pub Date : 2025-01-13 DOI: 10.1016/j.resp.2025.104396
Yumiao Ren , Lin Xie , Xiaoni Wang , Jianbao Zhang
{"title":"Characteristics of brain network after cardiopulmonary phase synchronization enhancement","authors":"Yumiao Ren ,&nbsp;Lin Xie ,&nbsp;Xiaoni Wang ,&nbsp;Jianbao Zhang","doi":"10.1016/j.resp.2025.104396","DOIUrl":"10.1016/j.resp.2025.104396","url":null,"abstract":"<div><div>The central neural mechanism plays an important role in cardiopulmonary coupling. How the brain stem affects the cardiopulmonary coupling is relatively clear, but there are few studies on the cerebral cortex activity of cardiopulmonary coupling. We aim to study the response of the cerebral cortex for cardiopulmonary phase synchronization enhancement. The method of brain network was used and Pearson correlation analysis performed on the global attributes and phase synchronization time (CRPST) in the spontaneous, 2/2 and 4/4 breathing modes. Furthermore, calculated the phase lag index (PLI) among 21 lead EEG signals, and then analyzed the correlation between PLI and the parameters of cardiovascular and respiratory systems. Our results show that the global brain network characteristic parameters are significantly different in the three breath modes in the α (8–14 Hz) band. The global efficiency and feature path length are significantly positively correlated with the phase synchronization and PLI indexes are widely related to CRPST and respiratory depth in the spontaneous breathing mode, while the brain network parameters and PLI indexes are not correlated with CRPST and PLI mainly positively correlated with respiratory rate in the controlled breathing modes. The differences of brain networks in the three modes are mainly caused by the physiological factors of cardiopulmonary coupling. These show that enhanced cardiopulmonary phase synchronization with controlled breathing based on heartbeat has a significant effect on the cardiopulmonary system and maybe provide some ideas for regulating cardiopulmonary function in the future.</div></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"333 ","pages":"Article 104396"},"PeriodicalIF":1.9,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143010688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
End-tidal CO2 and ventilation: Novel markers for assessing performance levels in elite long-distance runners 潮末二氧化碳和通风:评估优秀长跑运动员表现水平的新指标。
IF 1.9 4区 医学
Respiratory Physiology & Neurobiology Pub Date : 2024-12-31 DOI: 10.1016/j.resp.2024.104389
Akihiro Sakamoto , Yohei Matsumoto , Hisashi Naito , Chin Moi Chow
{"title":"End-tidal CO2 and ventilation: Novel markers for assessing performance levels in elite long-distance runners","authors":"Akihiro Sakamoto ,&nbsp;Yohei Matsumoto ,&nbsp;Hisashi Naito ,&nbsp;Chin Moi Chow","doi":"10.1016/j.resp.2024.104389","DOIUrl":"10.1016/j.resp.2024.104389","url":null,"abstract":"<div><div>Well-trained individuals, compared to less well-trained individuals, exhibit a lower minute ventilation (V̇<sub>E</sub>) and higher end-tidal partial pressure of CO<sub>2</sub> (P<sub>ET</sub>CO<sub>2</sub>) at a given work rate. This study investigated whether such breathing adaptations seen in well-trained individuals also applied to elite long-distance runners. Forty-one long-distance runners were categorized into high (<strong>Long-High</strong>, consisting of Tokyo-Hakone College Ekiden [relay marathon] runners and Olympic athletes, n = 23), or low performance-level group <strong>(Long-Low</strong>, n = 18) according to their race times. Ten middle-distance runners (<strong>Middle</strong>) also participated in a comparison group. All subjects performed an incremental exercise test on a motorized treadmill until exhaustion. Maximum V̇O<sub>2</sub> and velocity were greater for the <strong>Long</strong> groups than the <strong>Middle</strong> group, however these measures were not distinguishable between the <strong>Long-High</strong> and the <strong>Long-Low</strong> groups. By contrast, V̇<sub>E</sub> and P<sub>ET</sub>CO<sub>2</sub> were able to identify the <strong>Long-High</strong> group. Submaximal V̇<sub>E</sub> were lowest, whilst P<sub>ET</sub>CO<sub>2</sub> especially at high running velocities were highest for the <strong>Long-High</strong> group. This study confirms that breathing patterns with lower V̇<sub>E</sub> and higher P<sub>ET</sub>CO<sub>2</sub> are relevant adaptation markers for assessing endurance race performance in elite long-distance runners.</div></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"333 ","pages":"Article 104389"},"PeriodicalIF":1.9,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142922777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Respiratory plasticity induced by chronic hyperoxia in juvenile and adult rats 慢性高氧诱导幼年和成年大鼠的呼吸可塑性。
IF 1.9 4区 医学
Respiratory Physiology & Neurobiology Pub Date : 2024-12-26 DOI: 10.1016/j.resp.2024.104386
Ryan W. Bavis , Matthew D. Danielson , Gemma Dufour , Julia Hanus , Ashley E. Pratt , Kristina E. Tobin
{"title":"Respiratory plasticity induced by chronic hyperoxia in juvenile and adult rats","authors":"Ryan W. Bavis ,&nbsp;Matthew D. Danielson ,&nbsp;Gemma Dufour ,&nbsp;Julia Hanus ,&nbsp;Ashley E. Pratt ,&nbsp;Kristina E. Tobin","doi":"10.1016/j.resp.2024.104386","DOIUrl":"10.1016/j.resp.2024.104386","url":null,"abstract":"<div><div>Chronic hyperoxia during early postnatal development depresses breathing when neonatal rats are returned to room air and causes long-lasting attenuation of the hypoxic ventilatory response (HVR). In contrast, little is known about the control of breathing of juvenile or adult mammals after chronic exposure to moderate hyperoxia later in life. Therefore, Sprague-Dawley rats were exposed to 60 % O<sub>2</sub> for 7 days (juveniles) or for 4 and 14 days (adults) and ventilation was measured by whole-body plethysmography immediately after the exposure or following a longer period of recovery in room air. Hyperoxia-treated juvenile rats appeared to hypoventilate when returned to room air (11–13 % lower ventilation and CO<sub>2</sub> convection requirement relative to age-matched controls), but chronic hyperoxia did not alter normoxic ventilation in adult rats. In contrast, pre-treatment with chronic hyperoxia augmented the HVR in both juvenile rats (+41 %) and adult rats (+28–50 %). The hypercapnic ventilatory response (7 % CO<sub>2</sub>) also tended to be augmented in adult rats after 14 days of hyperoxia, but this effect was not significant after accounting for variation in metabolic rate (i.e, CO<sub>2</sub> convection requirement). These findings confirm that chronic hyperoxia elicits age-specific respiratory plasticity in rats. These age-dependent differences are not caused by a lack of plasticity in adult-exposed rats; rather, there are qualitative differences in the plasticity that is expressed after chronic hyperoxia in neonates, juveniles, and adults as well as differences in its persistence.</div></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"333 ","pages":"Article 104386"},"PeriodicalIF":1.9,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142897112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effectiveness of selective NaV1.7 blocker PF-05089771 in reducing cough associated with allergic rhinitis in guinea pigs 选择性NaV1.7阻滞剂PF-05089771减轻豚鼠变应性鼻炎相关咳嗽的有效性
IF 1.9 4区 医学
Respiratory Physiology & Neurobiology Pub Date : 2024-12-25 DOI: 10.1016/j.resp.2024.104387
Janka Jakusova , Tomas Buday , Daniela Mokra , Romana Barosova , Juliana Hanusrichterova , Marian Adamkov , Veronika Mestanova , Jana Plevkova , Mariana Brozmanova
{"title":"Effectiveness of selective NaV1.7 blocker PF-05089771 in reducing cough associated with allergic rhinitis in guinea pigs","authors":"Janka Jakusova ,&nbsp;Tomas Buday ,&nbsp;Daniela Mokra ,&nbsp;Romana Barosova ,&nbsp;Juliana Hanusrichterova ,&nbsp;Marian Adamkov ,&nbsp;Veronika Mestanova ,&nbsp;Jana Plevkova ,&nbsp;Mariana Brozmanova","doi":"10.1016/j.resp.2024.104387","DOIUrl":"10.1016/j.resp.2024.104387","url":null,"abstract":"<div><h3>Background</h3><div>Allergic rhinitis (AR) is a common cause of chronic cough, linked to dysregulated airway C- and Aδ-fibres through inflammatory mediators. Despite the limited efficacy of current antitussive therapies, recent studies show that the Na<sub>V</sub>1.7 inhibitor can block cough in naïve guinea pigs. This study aimed to analyse the effect of the Na<sub>V</sub>1.7 blocker PF-05089771 on cough in guinea pigs with AR.</div></div><div><h3>Methods</h3><div>Dunkin Hartley guinea pigs were sensitised and challenged with ovalbumin (OVA). Cough was induced using citric acid aerosol (0.4 M) before nasal challenge (NCH), and then one hour after the 1st, 3rd, and 6th NCH. The OVA-inhibitor group was pre-treated with inhaled Na<sub>V</sub>1.7 blocker (PF-05089771, 100 μM) before tussigen inhalation.</div></div><div><h3>Results</h3><div>Chronic AR increased cough response to citric acid in both males and females. Pre-treatment with Na<sub>V</sub>1.7 blocker significantly inhibited cough reflex by ≈ 75 % in males and ≈ 80 % in females without affecting respiratory rate.</div></div><div><h3>Conclusion</h3><div>Na<sub>V</sub>1.7 blocker inhalation effectively inhibits cough in guinea pigs with AR.</div></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"333 ","pages":"Article 104387"},"PeriodicalIF":1.9,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142897093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of imatinib on lipopolysaccharide‑induced acute lung injury and endothelial dysfunction through the P38 MAPK and NF-κB signaling pathways in vivo and in vitro 伊马替尼通过体内和体外P38 MAPK和NF-κB信号通路对脂多糖诱导的急性肺损伤和内皮功能障碍的影响
IF 1.9 4区 医学
Respiratory Physiology & Neurobiology Pub Date : 2024-12-25 DOI: 10.1016/j.resp.2024.104388
Yaru Liu , Duanyang Li , Tianyi Zhang , Keruo Wang , Xue Liang , Xiaolong Zong , Hong Yang , Zhenyu Li
{"title":"Effect of imatinib on lipopolysaccharide‑induced acute lung injury and endothelial dysfunction through the P38 MAPK and NF-κB signaling pathways in vivo and in vitro","authors":"Yaru Liu ,&nbsp;Duanyang Li ,&nbsp;Tianyi Zhang ,&nbsp;Keruo Wang ,&nbsp;Xue Liang ,&nbsp;Xiaolong Zong ,&nbsp;Hong Yang ,&nbsp;Zhenyu Li","doi":"10.1016/j.resp.2024.104388","DOIUrl":"10.1016/j.resp.2024.104388","url":null,"abstract":"<div><h3>Background</h3><div>The primary purpose of this study was to demonstrate the preventive effects of imatinib (IMA) on lipopolysaccharide (LPS)-induced inflammation in a mouse model of acute lung injury (ALI) and human umbilical vascular endothelial cells.</div></div><div><h3>Methods</h3><div>LPS stimulation for 24 h induced ALI and cell inflammation. The pathological results of the lungs were evaluated using the wet/dry weight ratio, pulmonary vascular permeability measurements, and myeloperoxidase immunohistochemistry. The expression of pro-inflammatory mediators was analyzed using RT-PCR and enzyme-linked immunosorbent assay. Protein levels were analyzed using western blotting. The structure of cell junctions was detected using immunofluorescence.</div></div><div><h3>Results</h3><div>IMA improved LPS-induced pulmonary pathological damage and reduced the lung wet/dry weight ratio and myeloperoxidase expression in the lung tissue. IMA decreased bronchoalveolar lavage fluid inflammatory cell count and the release of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and monocyte chemotactic protein 1 (MCP-1) in the blood. Pretreatment of human umbilical vascular endothelial cells with IMA significantly attenuated LPS-induced actin stress fiber formation and vascular endothelial-cadherin disruption. In addition, IMA downregulated the mRNA abundances of vascular cell adhesion molecule 1, intercellular adhesion molecule 1, IL-1β, IL-6, and tumor necrosis factor-α(TNF-α) expression. The phosphorylation of p65, nuclear factor-kappa B inhibitor alpha (IκBα), p38, extracellular signal-regulated kinase, and Jun N-terminal kinase induced by LPS were attenuated after IMA treatment in vivo and in vitro.</div></div><div><h3>Conclusions</h3><div>IMA modulates the nuclear factor-kappa B and mitogen-activated protein kinase signaling pathways and the production of pro-inflammatory cytokines to prevent cellular damage due to LPS infection. These results indicate that IMA may be a potential modulator of LPS-induced ALI.</div></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"333 ","pages":"Article 104388"},"PeriodicalIF":1.9,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142897090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early and late postnatal lung distribution of collagen type VI in preterm and term infants 早产儿和足月儿出生后早期和晚期肺部 VI 型胶原蛋白的分布。
IF 1.9 4区 医学
Respiratory Physiology & Neurobiology Pub Date : 2024-11-21 DOI: 10.1016/j.resp.2024.104366
Laszlo Markasz , Hamid Mobini-Far , Richard Sindelar
{"title":"Early and late postnatal lung distribution of collagen type VI in preterm and term infants","authors":"Laszlo Markasz ,&nbsp;Hamid Mobini-Far ,&nbsp;Richard Sindelar","doi":"10.1016/j.resp.2024.104366","DOIUrl":"10.1016/j.resp.2024.104366","url":null,"abstract":"<div><div>Collagen type VI (COL6) is an important component of the extracellular matrix (EM) and may have a major role in lung development and disease. Studies on COL6 expression during lung development are mainly based on animal models. The aim of the study was to define COL6 expression pattern in lung parenchyma in infants with different lung maturational stages.</div><div>COL6 expression in 115 lung samples from deceased newborn infants (21–41 weeks’ gestational age; 0–228 days’ postnatal age) was studied by immunohistochemistry combined with digital image analysis.</div><div>The distribution of COL6 expression was generally heterogeneous in the lung parenchyma of preterm and term infants. The size of the high-density and low-density areas appeared with logarithmic correlation and COL6 defined the basement membrane (BM) with a prominent expression around the air spaces in the canalicular stage during the first postnatal week. Infants at the alveolar stage showed linear correlation and a fine filamentous appearance during the first week of postnatal life, similarly to adults.</div><div>COL6 is condensed to areas corresponding to the BM during the first postnatal week of the canalicular stage of lung development. After the first postnatal week COL6 expression changes to a microfibrillar appearance in the ECM, similar to the pattern that characterizes the later alveolar stage and adults. The localization of COL6 during the canalicular and saccular stages might have a higher impact on lung development than the amount of COL6.</div></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"332 ","pages":"Article 104366"},"PeriodicalIF":1.9,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142692460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信