Respiratory Physiology & Neurobiology最新文献

筛选
英文 中文
Endomorphin-2 (Endo2) and substance P (SubP) co-application attenuates SubP-induced excitation and alters frequency plasticity in neonatal rat in vitro preparations 在新生大鼠体外制备中,内啡肽-2(Endo2)和P物质(SubP)联合应用可减轻SubP诱导的兴奋并改变频率可塑性。
IF 1.9 4区 医学
Respiratory Physiology & Neurobiology Pub Date : 2024-09-19 DOI: 10.1016/j.resp.2024.104351
{"title":"Endomorphin-2 (Endo2) and substance P (SubP) co-application attenuates SubP-induced excitation and alters frequency plasticity in neonatal rat in vitro preparations","authors":"","doi":"10.1016/j.resp.2024.104351","DOIUrl":"10.1016/j.resp.2024.104351","url":null,"abstract":"<div><div>Substance P (SubP) and endomorphin-2 (Endo2) are co-localized presynaptically in vesicles of neurons adjacent to inspiratory rhythm-generating pre-Botzinger Complex (preBotC) neurons but the effects of co-released SubP and Endo2 on respiratory motor control are not known. To address this question, SubP alone or a combination of SubP and Endo2 (SubP/Endo2) were bath-applied in a sustained (15-min) or intermittent (5-min application, 5-min washout, x3) pattern at 10–100 nM to neonatal rat brainstem-spinal cord preparations. During neuropeptide application, SubP/Endo2 co-applications generally attenuated SubP-induced increases in burst frequency and decreases in burst amplitude. With respect to frequency plasticity (long-lasting increase in burst frequency 60 min post-neuropeptide application), SubP-induced frequency plasticity was increased with sustained SubP/Endo2 co-applications at 20 and 100 nM. Intermittent SubP/Endo2 co-applications tended to decrease the level of frequency plasticity induced by intermittent SubP alone applications. SubP/Endo2 co-applications revealed potentially new functions for neurokinin-1 (NK1R) and mu-opioid (MOR) receptors on respiratory rhythm-generating medullary neurons.</div></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142294047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The acute effect of respiratory muscle training on cortisol, testosterone, and testosterone-to-cortisol ratio in well-trained triathletes - exploratory study 呼吸肌训练对训练有素的铁人三项运动员的皮质醇、睾酮和睾酮-皮质醇比率的急性影响--探索性研究。
IF 1.9 4区 医学
Respiratory Physiology & Neurobiology Pub Date : 2024-09-17 DOI: 10.1016/j.resp.2024.104353
{"title":"The acute effect of respiratory muscle training on cortisol, testosterone, and testosterone-to-cortisol ratio in well-trained triathletes - exploratory study","authors":"","doi":"10.1016/j.resp.2024.104353","DOIUrl":"10.1016/j.resp.2024.104353","url":null,"abstract":"<div><div>The study investigated acute changes in cortisol (C) and testosterone (T) associated with a popular RMT method, voluntary isocapnic hyperpnoea (VIH), in well-trained triathletes. 19 athletes (7 females, 12 males) performed a VIH training session with pre- and post- serum C and T measurements. Repeated measures ANOVA was employed to analyze hormone changes during VIH, with additional time-sex interaction. Pearson correlation coefficient has been computed to identify the relationship between hormonal changes and age, anthropometric indices, respiratory muscle strength, and training experience. There was a statistically significant effect for C changes (F = 13.101, p = 0.002, η<sub>p</sub><sup>2</sup> = 0.421, ω<sup>2</sup> = 0.08). The C concentration was significantly lower after VIH (Mean Difference = −32.49 <em>± 39.13</em> nmol*L<sup>−1</sup>). No significant effects for T, T/C ratio, and time-sex interactions were observed (p &gt; 0.05). Amongst many, significant correlations between the percentage of body fat and changes in C (r=-0.464, p=0.045), body mass and changes in T (r=0.516, p=0.024), height and changes in T (r=0.509, p=0.026) were found. VIH significantly lowered C concentration. No significant effects for T, T/C ratio, and no between-sex differences were observed. Noteworthy individual variability was observed in all the monitored indices. Significant correlations were found between acute hormone changes associated with VIH and selected anthropometric indices. The study provides initial insight into VIH’s role in athletes’ hormonal balance to possibly guide exercise prescription, autoregulation, arousal state management, and recovery practices in athletes.</div></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569904824001460/pdfft?md5=95f9e5352d854d42eb2f88ba588c5cf9&pid=1-s2.0-S1569904824001460-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142294049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lateral hypothalamic astrocytes contribute to the hypercapnic chemoreflex in a light-dark cycle-dependent manner in unanesthetized rats 在未麻醉的大鼠体内,下丘脑外侧星形胶质细胞以光暗周期依赖的方式促进高碳酸血症化学反射。
IF 1.9 4区 医学
Respiratory Physiology & Neurobiology Pub Date : 2024-09-17 DOI: 10.1016/j.resp.2024.104352
{"title":"Lateral hypothalamic astrocytes contribute to the hypercapnic chemoreflex in a light-dark cycle-dependent manner in unanesthetized rats","authors":"","doi":"10.1016/j.resp.2024.104352","DOIUrl":"10.1016/j.resp.2024.104352","url":null,"abstract":"<div><div>Brainstem astrocytes are important for CO<sub>2</sub><sup>/</sup>H<sup>+</sup> chemoreception. Lateral Hypothalamus/Perifornicial Area (LH/PFA) neurons have an excitatory effect on the ventilatory response to CO<sub>2</sub>, however the role of the astrocytes is unknown. We hypothesized that LH/PFA astrocytes play an excitatory role in the hypercapnic ventilatory response in a sleep-wake and light-dark cycles-dependent manner. We manipulated the activity of astrocytes in the LH/PFA of male Wistar rats through microinjection of Fluorocitrate (Fct), which selectively affects astrocytes, inducing the exocytosis of gliotransmitters. We investigated the effects of intra-LH/PFA Fct microinjection on resting breathing and ventilatory responses to hypercapnia and hypoxia during wakefulness and NREM sleep, in the light and dark phases. Fct increased ventilation during hypercapnia but not during room air or hypoxia. The hypercapnic chemoreflex was increased exclusively during the dark-active phase during both, wakefulness and NREM sleep, indicating that LH/PFA astrocytes play an excitatory role in hypercapnic ventilatory response in a light-dark cycle-dependent manner.</div></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142294048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ticagrelor-related dyspnea beyond adenosine: Insights into retrotrapezoid hyperactivity 超越腺苷的替卡格雷相关呼吸困难:后蛛网膜活动亢进的启示
IF 1.9 4区 医学
Respiratory Physiology & Neurobiology Pub Date : 2024-09-16 DOI: 10.1016/j.resp.2024.104349
{"title":"Ticagrelor-related dyspnea beyond adenosine: Insights into retrotrapezoid hyperactivity","authors":"","doi":"10.1016/j.resp.2024.104349","DOIUrl":"10.1016/j.resp.2024.104349","url":null,"abstract":"<div><p>Ticagrelor, a P2Y<sub>12</sub> receptor antagonist, has been demonstrated to induce dyspnea, which is not associated with cardiac or pulmonary alterations, or metabolic disturbances. The attribution of ticagrelor-related dyspnea to excess adenosine has been widely proposed, yet is not supported by experimental data. In this paper, we put forth a novel hypothesis that the hyperactivity of the retrotrapezoid nucleus, a group of ventral medullary neurons involved in respiratory modulation, is the underlying cause of ticagrelor-related dyspnea. This hypothesis offers a theoretical resolution to the discrepancies and controversies present in previous theories.</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142238365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
4-Hydroxychalcone attenuates ovalbumin-induced allergic airway inflammation and oxidative stress by activating Nrf2/GPx4 pathway 4-羟基查尔酮通过激活Nrf2/GPx4通路减轻卵清蛋白诱导的过敏性气道炎症和氧化应激反应
IF 1.9 4区 医学
Respiratory Physiology & Neurobiology Pub Date : 2024-09-12 DOI: 10.1016/j.resp.2024.104348
{"title":"4-Hydroxychalcone attenuates ovalbumin-induced allergic airway inflammation and oxidative stress by activating Nrf2/GPx4 pathway","authors":"","doi":"10.1016/j.resp.2024.104348","DOIUrl":"10.1016/j.resp.2024.104348","url":null,"abstract":"<div><p>Asthma is a lung condition characterized by impaired respiratory function and an apparent infiltration of inflammatory cells. Chalcones are substances that have attracted considerable interest in the disciplines of pharmaceutical chemistry and drug discovery due to their diverse biochemical processes, such as antioxidant, anti-inflammatory, anticancer, antibacterial, and others, but whether they can be used in asthma treatment has yet to be investigated. This study aimed to investigate the immunomodulatory effect of 4 hydroxychalcone (4-HC) against allergic asthma in mice. In this research, we investigated how 4-HC affected asthmatic behavior, leukocyte infiltration, histopathological alterations, oxidative stress, immunoglobulin E (IgE) production, and airway inflammation. Moreover, ELISA and immunohistochemistry (IHC) were used to measure the expression of Nrf2 and GPx4. 4-HC treatment significantly decreased lung oxidative stress, inflammatory cell infiltration, and IgE levels. According to our findings, we imply that 4-HC may be utilized as an anti-asthmatic agent through the upregulation of Nrf2/GPx4 signaling pathway.</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142228804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental and numerical investigation of pressure distribution in human upper airway passage before and after maxillary sinus surgery 上颌窦手术前后人体上气道压力分布的实验和数值研究
IF 1.9 4区 医学
Respiratory Physiology & Neurobiology Pub Date : 2024-09-12 DOI: 10.1016/j.resp.2024.104347
{"title":"Experimental and numerical investigation of pressure distribution in human upper airway passage before and after maxillary sinus surgery","authors":"","doi":"10.1016/j.resp.2024.104347","DOIUrl":"10.1016/j.resp.2024.104347","url":null,"abstract":"<div><p>Sinusitis, a common disease of the maxillary sinus, is initially managed with saline solution and medication, resulting in the resolution of symptoms within a few days in most cases. However, Functional Endoscopic Sinus Surgeries are recommended if pharmacological treatments prove ineffective. This research aims to investigate the effects of maxillary sinus surgery on the airflow field, pressure distribution within the nasal cavity, and overall ventilation. This study utilized a three-dimensional realistic nasal cavity model constructed from CT images of a healthy adult. Virtual surgery including uncinectomy with Middle Meatal Antrostomy, two standard procedures performed during such surgeries, was performed on the model under the supervision of a clinical specialist. Two replicas representing pre- and post-operative cases were created using 3D printing for experimental purposes. Various breathing rates ranging from 3.8 to 42.6 L/min were examined through experimental and numerical simulations. To ensure the accuracy of the numerical simulations, the results were compared to measured pressure data, showing a reasonable agreement between the two. The findings demonstrate that uncinectomy and Middle Meatal Antrostomy significantly enhance the ventilation of the maxillary sinuses. Furthermore, increasing inspiratory rates leads to further improvements in ventilation. The static pressure distribution within the maxillary sinuses remains relatively uniform, except in regions close to the sinus ostium, even after surgical intervention.</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142238364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pyroptosis inhibition alleviates acute lung injury via E-twenty-six variant gene 5-mediated downregulation of gasdermin D 通过 E-twenty-six 变异基因 5 介导的 gasdermin D 下调,抑制裂解酶可减轻急性肺损伤
IF 1.9 4区 医学
Respiratory Physiology & Neurobiology Pub Date : 2024-09-11 DOI: 10.1016/j.resp.2024.104346
{"title":"Pyroptosis inhibition alleviates acute lung injury via E-twenty-six variant gene 5-mediated downregulation of gasdermin D","authors":"","doi":"10.1016/j.resp.2024.104346","DOIUrl":"10.1016/j.resp.2024.104346","url":null,"abstract":"<div><h3>Background</h3><p>Acute lung injury (ALI) is a life-threatening condition characterized by excessive pulmonary inflammation, yet its precise pathophysiology remains elusive. Pyroptosis, a programmed cell death mechanism controlled by gasdermin D (GSDMD), has been linked to the etiology of ALI. This study investigated the regulatory functions of the transcription factor E-twenty-six variant gene 5 (ETV5) and GSDMD in ALI.</p></div><div><h3>Methods</h3><p>Lipopolysaccharide (LPS) was used to treat BEAS-2B cells (50 mmol/mL) and establish an LPS-induced mouse model of ALI (by intratracheal administration, 3 mg/kg). Protein-protein docking, immunofluorescence analysis, western blotting, real-time quantitative polymerase chain reaction, and dual-luciferase reporter gene assay were used to examine ETV5-mediated negative feedback regulation of GSDMD and its effects on pyroptosis and ALI.</p></div><div><h3>Results</h3><p>Our results showed that the physiological function of ETV5 was reduced by its downregulated expression, which impeded its nuclear translocation in ALI mice. Increased pyroptosis and enhanced production of inflammatory cytokines were associated with LPS-induced ALI. ETV5 overexpression in LPS-treated BEAS-2B cells decreased the expression of total and membrane-bound GSDMD, negatively regulated GSDMD, and prevented pyroptosis. The expression of inflammatory cytokines was subsequently reduced due to this inhibition, which, in turn, reduced ALI. Molecular docking analysis and dual-luciferase reporter gene assay results indicated a direct interaction between ETV5 and GSDMD, which inhibited GSDMD production.</p></div><div><h3>Conclusion</h3><p>Our results indicate that ETV5 inhibits pyroptosis, decreases the expression of inflammatory cytokines, and negatively regulates GSDMD expression to ameliorate ALI symptoms.</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142172349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Breathing variability during running in athletes: The role of sex, exercise intensity and breathing reserve 运动员跑步时的呼吸变化:性别、运动强度和呼吸储备的作用
IF 1.9 4区 医学
Respiratory Physiology & Neurobiology Pub Date : 2024-09-11 DOI: 10.1016/j.resp.2024.104350
{"title":"Breathing variability during running in athletes: The role of sex, exercise intensity and breathing reserve","authors":"","doi":"10.1016/j.resp.2024.104350","DOIUrl":"10.1016/j.resp.2024.104350","url":null,"abstract":"<div><p>Highly trained aerobic athletes progressively use most of their breathing reserve with increased exercise intensity during whole-body exercise. Additionally, females typically present proportionally smaller lungs than males. Therefore, sex, exercise intensity, and breathing reserve use likely influence the volume and time in which respiratory parameters vary between consecutive breaths during whole-body exercise. However, breath-by-breath variability has been scarcely investigated during exercise. Accordingly, we sought to investigate breath-by-breath pulmonary ventilation (V̇<sub>E</sub>), tidal volume <sub>(</sub>V<sub>T</sub>), and respiratory frequency (<em>f</em><sub>R</sub>) variability during a maximal treadmill incremental exercise test in 17 females and 18 males highly trained professional endurance runners. The breath-by-breath variability was analyzed by root mean square of successive differences (RMSSD) within 1-minute windows. Females had lower absolute and percent predicted forced expiratory volume in one second (FEV<sub>1</sub>) and forced vital capacity (FVC) than males, as well as lower height-adjusted absolute FVC than males. V̇<sub>E</sub> and V<sub>T</sub> reserve use were similar between the sexes at peak exercise. While RMSSDV̇<sub>E</sub> and RMSSD<em>f</em><sub>R</sub> did not change over exercise (<em>P</em> &gt; 0.05), RMSSDV<sub>T</sub> progressively decreased (<em>P</em> &lt; 0.001). RMSSDV<sub>T</sub> was negatively correlated with V<sub>T</sub> reserve use only in males. Females showed lower RMSSDV̇<sub>E</sub> than males during the entire exercise test (<em>P</em> &lt; 0.001). At iso-V̇<sub>E</sub> reserve use, between-sex differences in RMSSDV̇<sub>E</sub> persisted (<em>P</em> = 0.003). Our findings indicate that exercise intensity decreases V<sub>T</sub> variability in professional runners, which is linked to V<sub>T</sub> reserve use in males but not females. Additionally, the female sex lowers V̇<sub>E</sub> variability regardless of exercise intensity and V̇<sub>E</sub> reserve use.</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142238500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of body position during weaning from total liquid ventilation in piglets 仔猪断奶时全液体通气体位的影响
IF 1.9 4区 医学
Respiratory Physiology & Neurobiology Pub Date : 2024-09-06 DOI: 10.1016/j.resp.2024.104338
{"title":"Effect of body position during weaning from total liquid ventilation in piglets","authors":"","doi":"10.1016/j.resp.2024.104338","DOIUrl":"10.1016/j.resp.2024.104338","url":null,"abstract":"<div><h3>Objective</h3><p>To determine if change in body position improves oxygen requirements and respiratory mechanics during the transition from total liquid ventilation (TLV) to gas ventilation.</p></div><div><h3>Methods</h3><p>Fourteen piglets underwent TLV, followed by a 2-hour weaning period under conventional gas ventilation. Subjects were randomized to the experimental group (Rotating – R), that was in prone position between the 10th and 30th minute of weaning, or to the static control group (Supine – S).</p></div><div><h3>Results</h3><p>Oxygenation index was lower in the R group at 30 minutes in prone position than that in the S group (1.9 [1.6; 2.8] vs 3.5 [3.1; 5.1], p = 0.001). This difference disappeared when subjects resumed the supine position (4.2 [3.8; 4.7] and 4.7 [3.8; 5.4], p = 0.4, for the R and S groups, respectively). The change in body position did not affect respiratory system compliance or inspiratory capacity.</p></div><div><h3>Conclusion</h3><p>Prone position improved oxygenation during weaning from TLV. The effect disappeared once piglets returned to the supine position.</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569904824001319/pdfft?md5=649ca5535e39476d95c2ab3bbfceffaf&pid=1-s2.0-S1569904824001319-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142146106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Loss of endogenous circadian clock function in mice alters respiratory cycle timing in a time of day- and sex-specific manner 小鼠内源性昼夜节律时钟功能的缺失会改变呼吸周期的时间,这种改变具有时间和性别特异性。
IF 1.9 4区 医学
Respiratory Physiology & Neurobiology Pub Date : 2024-09-06 DOI: 10.1016/j.resp.2024.104337
{"title":"Loss of endogenous circadian clock function in mice alters respiratory cycle timing in a time of day- and sex-specific manner","authors":"","doi":"10.1016/j.resp.2024.104337","DOIUrl":"10.1016/j.resp.2024.104337","url":null,"abstract":"<div><p>Resting breathing and ventilatory chemoreflexes are regulated in a 24-hr manner by the endogenous circadian clock. However, it is unclear how circadian biology influences different phases of the breath-to-breath respiratory cycle which are predominantly controlled by pontomedullary regions of the brainstem. Here, we performed whole-body plethysmography during quiet wakefulness in young adult male and female mice lacking the core clock gene Brain and Muscle Arnt-like 1 (BMAL1) to determine the extent to which the molecular clock affects respiratory cycle timing and ventilatory airflow mechanics. Breath waveform analysis revealed that male BMAL1 knockout (KO) mice exhibit time of day-specific differences in inspiratory and expiratory times, total cycle length, end inspiratory pause, relaxation time, and respiratory rate compared to wild-type littermates. Notably, changes in respiratory pattern were not observed in female BMAL1 KO mice when compared to wild-type females. Additionally, BMAL1 deficiency did not disrupt overall minute ventilation or peak airflow in either sex, suggesting total ventilatory function during quiet wakefulness is preserved. Taken together, these findings indicate that genetic disruption of the circadian clock in mice elicits sex-specific changes in respiratory cycle timing.</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142146107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信