Respiratory Physiology & Neurobiology最新文献

筛选
英文 中文
Ticagrelor-related dyspnea beyond adenosine: Insights into retrotrapezoid hyperactivity 超越腺苷的替卡格雷相关呼吸困难:后蛛网膜活动亢进的启示
IF 1.9 4区 医学
Respiratory Physiology & Neurobiology Pub Date : 2024-09-16 DOI: 10.1016/j.resp.2024.104349
Enver Ahmet Demir, Okan Gonder
{"title":"Ticagrelor-related dyspnea beyond adenosine: Insights into retrotrapezoid hyperactivity","authors":"Enver Ahmet Demir,&nbsp;Okan Gonder","doi":"10.1016/j.resp.2024.104349","DOIUrl":"10.1016/j.resp.2024.104349","url":null,"abstract":"<div><p>Ticagrelor, a P2Y<sub>12</sub> receptor antagonist, has been demonstrated to induce dyspnea, which is not associated with cardiac or pulmonary alterations, or metabolic disturbances. The attribution of ticagrelor-related dyspnea to excess adenosine has been widely proposed, yet is not supported by experimental data. In this paper, we put forth a novel hypothesis that the hyperactivity of the retrotrapezoid nucleus, a group of ventral medullary neurons involved in respiratory modulation, is the underlying cause of ticagrelor-related dyspnea. This hypothesis offers a theoretical resolution to the discrepancies and controversies present in previous theories.</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"331 ","pages":"Article 104349"},"PeriodicalIF":1.9,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142238365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
4-Hydroxychalcone attenuates ovalbumin-induced allergic airway inflammation and oxidative stress by activating Nrf2/GPx4 pathway 4-羟基查尔酮通过激活Nrf2/GPx4通路减轻卵清蛋白诱导的过敏性气道炎症和氧化应激反应
IF 1.9 4区 医学
Respiratory Physiology & Neurobiology Pub Date : 2024-09-12 DOI: 10.1016/j.resp.2024.104348
Islam Ahmed Abdelmawgood , Mohamed A. Kotb , Hassan Samy Hassan , Abeer Mahmoud Badr , Noha A. Mahana , Ayman Saber Mohamed , Marina Lotfy Khalaf , Nouran Khalid Mostafa , Basant Ehab Diab , Nada Nasser Ahmed , Zeinab Abdeltawab Alamudddin , Laila Alhoussin Soliman , Mariam Khaled Fahim , Asmaa Elsayed Abdelkader
{"title":"4-Hydroxychalcone attenuates ovalbumin-induced allergic airway inflammation and oxidative stress by activating Nrf2/GPx4 pathway","authors":"Islam Ahmed Abdelmawgood ,&nbsp;Mohamed A. Kotb ,&nbsp;Hassan Samy Hassan ,&nbsp;Abeer Mahmoud Badr ,&nbsp;Noha A. Mahana ,&nbsp;Ayman Saber Mohamed ,&nbsp;Marina Lotfy Khalaf ,&nbsp;Nouran Khalid Mostafa ,&nbsp;Basant Ehab Diab ,&nbsp;Nada Nasser Ahmed ,&nbsp;Zeinab Abdeltawab Alamudddin ,&nbsp;Laila Alhoussin Soliman ,&nbsp;Mariam Khaled Fahim ,&nbsp;Asmaa Elsayed Abdelkader","doi":"10.1016/j.resp.2024.104348","DOIUrl":"10.1016/j.resp.2024.104348","url":null,"abstract":"<div><p>Asthma is a lung condition characterized by impaired respiratory function and an apparent infiltration of inflammatory cells. Chalcones are substances that have attracted considerable interest in the disciplines of pharmaceutical chemistry and drug discovery due to their diverse biochemical processes, such as antioxidant, anti-inflammatory, anticancer, antibacterial, and others, but whether they can be used in asthma treatment has yet to be investigated. This study aimed to investigate the immunomodulatory effect of 4 hydroxychalcone (4-HC) against allergic asthma in mice. In this research, we investigated how 4-HC affected asthmatic behavior, leukocyte infiltration, histopathological alterations, oxidative stress, immunoglobulin E (IgE) production, and airway inflammation. Moreover, ELISA and immunohistochemistry (IHC) were used to measure the expression of Nrf2 and GPx4. 4-HC treatment significantly decreased lung oxidative stress, inflammatory cell infiltration, and IgE levels. According to our findings, we imply that 4-HC may be utilized as an anti-asthmatic agent through the upregulation of Nrf2/GPx4 signaling pathway.</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"331 ","pages":"Article 104348"},"PeriodicalIF":1.9,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142228804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental and numerical investigation of pressure distribution in human upper airway passage before and after maxillary sinus surgery 上颌窦手术前后人体上气道压力分布的实验和数值研究
IF 1.9 4区 医学
Respiratory Physiology & Neurobiology Pub Date : 2024-09-12 DOI: 10.1016/j.resp.2024.104347
Mehrab Abbasi , Hossein Amjadimanesh , Sasan Sadrizadeh , Omid Abouali
{"title":"Experimental and numerical investigation of pressure distribution in human upper airway passage before and after maxillary sinus surgery","authors":"Mehrab Abbasi ,&nbsp;Hossein Amjadimanesh ,&nbsp;Sasan Sadrizadeh ,&nbsp;Omid Abouali","doi":"10.1016/j.resp.2024.104347","DOIUrl":"10.1016/j.resp.2024.104347","url":null,"abstract":"<div><p>Sinusitis, a common disease of the maxillary sinus, is initially managed with saline solution and medication, resulting in the resolution of symptoms within a few days in most cases. However, Functional Endoscopic Sinus Surgeries are recommended if pharmacological treatments prove ineffective. This research aims to investigate the effects of maxillary sinus surgery on the airflow field, pressure distribution within the nasal cavity, and overall ventilation. This study utilized a three-dimensional realistic nasal cavity model constructed from CT images of a healthy adult. Virtual surgery including uncinectomy with Middle Meatal Antrostomy, two standard procedures performed during such surgeries, was performed on the model under the supervision of a clinical specialist. Two replicas representing pre- and post-operative cases were created using 3D printing for experimental purposes. Various breathing rates ranging from 3.8 to 42.6 L/min were examined through experimental and numerical simulations. To ensure the accuracy of the numerical simulations, the results were compared to measured pressure data, showing a reasonable agreement between the two. The findings demonstrate that uncinectomy and Middle Meatal Antrostomy significantly enhance the ventilation of the maxillary sinuses. Furthermore, increasing inspiratory rates leads to further improvements in ventilation. The static pressure distribution within the maxillary sinuses remains relatively uniform, except in regions close to the sinus ostium, even after surgical intervention.</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"331 ","pages":"Article 104347"},"PeriodicalIF":1.9,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142238364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pyroptosis inhibition alleviates acute lung injury via E-twenty-six variant gene 5-mediated downregulation of gasdermin D 通过 E-twenty-six 变异基因 5 介导的 gasdermin D 下调,抑制裂解酶可减轻急性肺损伤
IF 1.9 4区 医学
Respiratory Physiology & Neurobiology Pub Date : 2024-09-11 DOI: 10.1016/j.resp.2024.104346
Wenlong Zhang , Xinhua Wang , Chenhui Ma, Bao Liang, Lihong Ma, Yan Wang, Yuanjie Lin, Shuguang Han
{"title":"Pyroptosis inhibition alleviates acute lung injury via E-twenty-six variant gene 5-mediated downregulation of gasdermin D","authors":"Wenlong Zhang ,&nbsp;Xinhua Wang ,&nbsp;Chenhui Ma,&nbsp;Bao Liang,&nbsp;Lihong Ma,&nbsp;Yan Wang,&nbsp;Yuanjie Lin,&nbsp;Shuguang Han","doi":"10.1016/j.resp.2024.104346","DOIUrl":"10.1016/j.resp.2024.104346","url":null,"abstract":"<div><h3>Background</h3><p>Acute lung injury (ALI) is a life-threatening condition characterized by excessive pulmonary inflammation, yet its precise pathophysiology remains elusive. Pyroptosis, a programmed cell death mechanism controlled by gasdermin D (GSDMD), has been linked to the etiology of ALI. This study investigated the regulatory functions of the transcription factor E-twenty-six variant gene 5 (ETV5) and GSDMD in ALI.</p></div><div><h3>Methods</h3><p>Lipopolysaccharide (LPS) was used to treat BEAS-2B cells (50 mmol/mL) and establish an LPS-induced mouse model of ALI (by intratracheal administration, 3 mg/kg). Protein-protein docking, immunofluorescence analysis, western blotting, real-time quantitative polymerase chain reaction, and dual-luciferase reporter gene assay were used to examine ETV5-mediated negative feedback regulation of GSDMD and its effects on pyroptosis and ALI.</p></div><div><h3>Results</h3><p>Our results showed that the physiological function of ETV5 was reduced by its downregulated expression, which impeded its nuclear translocation in ALI mice. Increased pyroptosis and enhanced production of inflammatory cytokines were associated with LPS-induced ALI. ETV5 overexpression in LPS-treated BEAS-2B cells decreased the expression of total and membrane-bound GSDMD, negatively regulated GSDMD, and prevented pyroptosis. The expression of inflammatory cytokines was subsequently reduced due to this inhibition, which, in turn, reduced ALI. Molecular docking analysis and dual-luciferase reporter gene assay results indicated a direct interaction between ETV5 and GSDMD, which inhibited GSDMD production.</p></div><div><h3>Conclusion</h3><p>Our results indicate that ETV5 inhibits pyroptosis, decreases the expression of inflammatory cytokines, and negatively regulates GSDMD expression to ameliorate ALI symptoms.</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"331 ","pages":"Article 104346"},"PeriodicalIF":1.9,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142172349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Breathing variability during running in athletes: The role of sex, exercise intensity and breathing reserve 运动员跑步时的呼吸变化:性别、运动强度和呼吸储备的作用
IF 1.9 4区 医学
Respiratory Physiology & Neurobiology Pub Date : 2024-09-11 DOI: 10.1016/j.resp.2024.104350
Thiago Ribeiro Lopes , Diogo Machado de Oliveira , Luís Adriano Amoroso de Lima , Bruno Moreira Silva
{"title":"Breathing variability during running in athletes: The role of sex, exercise intensity and breathing reserve","authors":"Thiago Ribeiro Lopes ,&nbsp;Diogo Machado de Oliveira ,&nbsp;Luís Adriano Amoroso de Lima ,&nbsp;Bruno Moreira Silva","doi":"10.1016/j.resp.2024.104350","DOIUrl":"10.1016/j.resp.2024.104350","url":null,"abstract":"<div><p>Highly trained aerobic athletes progressively use most of their breathing reserve with increased exercise intensity during whole-body exercise. Additionally, females typically present proportionally smaller lungs than males. Therefore, sex, exercise intensity, and breathing reserve use likely influence the volume and time in which respiratory parameters vary between consecutive breaths during whole-body exercise. However, breath-by-breath variability has been scarcely investigated during exercise. Accordingly, we sought to investigate breath-by-breath pulmonary ventilation (V̇<sub>E</sub>), tidal volume <sub>(</sub>V<sub>T</sub>), and respiratory frequency (<em>f</em><sub>R</sub>) variability during a maximal treadmill incremental exercise test in 17 females and 18 males highly trained professional endurance runners. The breath-by-breath variability was analyzed by root mean square of successive differences (RMSSD) within 1-minute windows. Females had lower absolute and percent predicted forced expiratory volume in one second (FEV<sub>1</sub>) and forced vital capacity (FVC) than males, as well as lower height-adjusted absolute FVC than males. V̇<sub>E</sub> and V<sub>T</sub> reserve use were similar between the sexes at peak exercise. While RMSSDV̇<sub>E</sub> and RMSSD<em>f</em><sub>R</sub> did not change over exercise (<em>P</em> &gt; 0.05), RMSSDV<sub>T</sub> progressively decreased (<em>P</em> &lt; 0.001). RMSSDV<sub>T</sub> was negatively correlated with V<sub>T</sub> reserve use only in males. Females showed lower RMSSDV̇<sub>E</sub> than males during the entire exercise test (<em>P</em> &lt; 0.001). At iso-V̇<sub>E</sub> reserve use, between-sex differences in RMSSDV̇<sub>E</sub> persisted (<em>P</em> = 0.003). Our findings indicate that exercise intensity decreases V<sub>T</sub> variability in professional runners, which is linked to V<sub>T</sub> reserve use in males but not females. Additionally, the female sex lowers V̇<sub>E</sub> variability regardless of exercise intensity and V̇<sub>E</sub> reserve use.</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"331 ","pages":"Article 104350"},"PeriodicalIF":1.9,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142238500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of body position during weaning from total liquid ventilation in piglets 仔猪断奶时全液体通气体位的影响
IF 1.9 4区 医学
Respiratory Physiology & Neurobiology Pub Date : 2024-09-06 DOI: 10.1016/j.resp.2024.104338
Alexandru Panaitescu , Christophe Morin , Mouhamed Amin Boudaouara , Sarah-Gabrielle Taillandier-Pensarini , Nathalie Samson , Jean-Paul Praud , Philippe Micheau , Etienne Fortin-Pellerin
{"title":"Effect of body position during weaning from total liquid ventilation in piglets","authors":"Alexandru Panaitescu ,&nbsp;Christophe Morin ,&nbsp;Mouhamed Amin Boudaouara ,&nbsp;Sarah-Gabrielle Taillandier-Pensarini ,&nbsp;Nathalie Samson ,&nbsp;Jean-Paul Praud ,&nbsp;Philippe Micheau ,&nbsp;Etienne Fortin-Pellerin","doi":"10.1016/j.resp.2024.104338","DOIUrl":"10.1016/j.resp.2024.104338","url":null,"abstract":"<div><h3>Objective</h3><p>To determine if change in body position improves oxygen requirements and respiratory mechanics during the transition from total liquid ventilation (TLV) to gas ventilation.</p></div><div><h3>Methods</h3><p>Fourteen piglets underwent TLV, followed by a 2-hour weaning period under conventional gas ventilation. Subjects were randomized to the experimental group (Rotating – R), that was in prone position between the 10th and 30th minute of weaning, or to the static control group (Supine – S).</p></div><div><h3>Results</h3><p>Oxygenation index was lower in the R group at 30 minutes in prone position than that in the S group (1.9 [1.6; 2.8] vs 3.5 [3.1; 5.1], p = 0.001). This difference disappeared when subjects resumed the supine position (4.2 [3.8; 4.7] and 4.7 [3.8; 5.4], p = 0.4, for the R and S groups, respectively). The change in body position did not affect respiratory system compliance or inspiratory capacity.</p></div><div><h3>Conclusion</h3><p>Prone position improved oxygenation during weaning from TLV. The effect disappeared once piglets returned to the supine position.</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"331 ","pages":"Article 104338"},"PeriodicalIF":1.9,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569904824001319/pdfft?md5=649ca5535e39476d95c2ab3bbfceffaf&pid=1-s2.0-S1569904824001319-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142146106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Loss of endogenous circadian clock function in mice alters respiratory cycle timing in a time of day- and sex-specific manner 小鼠内源性昼夜节律时钟功能的缺失会改变呼吸周期的时间,这种改变具有时间和性别特异性。
IF 1.9 4区 医学
Respiratory Physiology & Neurobiology Pub Date : 2024-09-06 DOI: 10.1016/j.resp.2024.104337
Aaron A. Jones , Deanna M. Arble
{"title":"Loss of endogenous circadian clock function in mice alters respiratory cycle timing in a time of day- and sex-specific manner","authors":"Aaron A. Jones ,&nbsp;Deanna M. Arble","doi":"10.1016/j.resp.2024.104337","DOIUrl":"10.1016/j.resp.2024.104337","url":null,"abstract":"<div><p>Resting breathing and ventilatory chemoreflexes are regulated in a 24-hr manner by the endogenous circadian clock. However, it is unclear how circadian biology influences different phases of the breath-to-breath respiratory cycle which are predominantly controlled by pontomedullary regions of the brainstem. Here, we performed whole-body plethysmography during quiet wakefulness in young adult male and female mice lacking the core clock gene Brain and Muscle Arnt-like 1 (BMAL1) to determine the extent to which the molecular clock affects respiratory cycle timing and ventilatory airflow mechanics. Breath waveform analysis revealed that male BMAL1 knockout (KO) mice exhibit time of day-specific differences in inspiratory and expiratory times, total cycle length, end inspiratory pause, relaxation time, and respiratory rate compared to wild-type littermates. Notably, changes in respiratory pattern were not observed in female BMAL1 KO mice when compared to wild-type females. Additionally, BMAL1 deficiency did not disrupt overall minute ventilation or peak airflow in either sex, suggesting total ventilatory function during quiet wakefulness is preserved. Taken together, these findings indicate that genetic disruption of the circadian clock in mice elicits sex-specific changes in respiratory cycle timing.</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"331 ","pages":"Article 104337"},"PeriodicalIF":1.9,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142146107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Invasive ventilation at the boundary of viability: A respiratory pathophysiology study of infants born between 22 and 24 weeks of gestation 存活边界的侵入性通气:妊娠 22-24 周间出生婴儿的呼吸病理生理学研究。
IF 1.9 4区 医学
Respiratory Physiology & Neurobiology Pub Date : 2024-09-03 DOI: 10.1016/j.resp.2024.104339
Theodore Dassios , Richard Sindelar , Emma Williams , Ourania Kaltsogianni , Anne Greenough
{"title":"Invasive ventilation at the boundary of viability: A respiratory pathophysiology study of infants born between 22 and 24 weeks of gestation","authors":"Theodore Dassios ,&nbsp;Richard Sindelar ,&nbsp;Emma Williams ,&nbsp;Ourania Kaltsogianni ,&nbsp;Anne Greenough","doi":"10.1016/j.resp.2024.104339","DOIUrl":"10.1016/j.resp.2024.104339","url":null,"abstract":"<div><h3>Background</h3><p>Invasive ventilation of infants born before 24 weeks of gestation is critical for survival and long-term respiratory outcomes, but currently there is a lack of evidence to guide respiratory management. We aimed to compare respiratory mechanics and gas exchange in ventilated extremely preterm infants born before and after 24 weeks of gestation.</p></div><div><h3>Methods</h3><p>Secondary analysis of two prospective observational cohort studies, comparing respiratory mechanics and indices of gas exchange in ventilated infants born at 22–24 weeks of gestation (<em>N</em>=14) compared to infants born at 25–27 weeks (<em>N</em>=37). The ventilation/perfusion ratio (V<sub>A</sub>/Q), intrapulmonary shunt, alveolar dead space (V<sub>Dalv</sub>) and adjusted alveolar surface area (S<sub>A</sub>) were measured in infants born at the Neonatal Unit of King’s College Hospital NHS Foundation Trust, London, UK.</p></div><div><h3>Results</h3><p>Compared to infants of 25–27 weeks, infants of 22–24 weeks had higher median (IQR) intrapulmonary shunt [18 (4 - 29) % vs 8 (2 – 12) %, p=0.044] and higher V<sub>Dalv</sub> [0.9 (0.6 – 1.4) vs 0.6 (0.5 – 0.7) ml/kg, p=0.036], but did not differ in V<sub>A</sub>/Q. Compared to infants of 25–27 weeks, the infants of 22–24 weeks had a lower adjusted S<sub>A</sub> [509 (322- 687) vs 706 (564 - 800) cm<sup>2</sup>, p=0.044]. The infants in the two groups did not differ in any of the indices of respiratory mechanics.</p></div><div><h3>Conclusion</h3><p>Ventilated infants born before 24 completed weeks of gestation exhibit abnormal gas exchange, with higher alveolar dead space and intrapulmonary shunt and a decreased alveolar surface area compared to extreme preterms born after 24 weeks of gestation.</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"331 ","pages":"Article 104339"},"PeriodicalIF":1.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569904824001320/pdfft?md5=3ee009b3a9626e7938120d0b544b5944&pid=1-s2.0-S1569904824001320-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of the pontine respiratory group in the suppression of cough by codeine in cats 可待因在抑制猫咳嗽中的脑桥呼吸群作用
IF 1.9 4区 医学
Respiratory Physiology & Neurobiology Pub Date : 2024-08-28 DOI: 10.1016/j.resp.2024.104326
Michal Simera, Denisa Berikova, Ole-Jacob Hovengen, Marek Laheye, Marcel Veternik, Lukas Martvon , Zuzana Kotmanova, Lucia Cibulkova, Ivan Poliacek
{"title":"Role of the pontine respiratory group in the suppression of cough by codeine in cats","authors":"Michal Simera,&nbsp;Denisa Berikova,&nbsp;Ole-Jacob Hovengen,&nbsp;Marek Laheye,&nbsp;Marcel Veternik,&nbsp;Lukas Martvon ,&nbsp;Zuzana Kotmanova,&nbsp;Lucia Cibulkova,&nbsp;Ivan Poliacek","doi":"10.1016/j.resp.2024.104326","DOIUrl":"10.1016/j.resp.2024.104326","url":null,"abstract":"<div><p>Codeine was microinjected into the area of the Kölliker-Fuse nucleus and the adjacent lateral parabrachial nucleus, within the pontine respiratory group in 8 anesthetized cats. Electromyograms (EMGs) of the diaphragm (DIA) and abdominal muscles (ABD), esophageal pressures (EP), and blood pressure were recorded and analyzed during mechanically induced tracheobronchial cough. Unilateral microinjections of 3.3 mM codeine (3 injections, each 37 ± 1.2 nl) had no significant effect on the cough number. However, the amplitudes of the cough ABD EMG, expiratory EP and, to a lesser extent, DIA EMG were significantly reduced. There were no significant changes in the temporal parameters of the cough. Control microinjections of artificial cerebrospinal fluid in 6 cats did not show a significant effect on cough data compared to those after codeine microinjections. Codeine-sensitive neurons in the rostral dorsolateral pons contribute to controlling cough motor output, likely through the central pattern generator of cough.</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"330 ","pages":"Article 104326"},"PeriodicalIF":1.9,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142111352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recovery of ventilatory and metabolic responses to hypoxia in neonatal rats after chronic hypoxia 慢性缺氧后新生大鼠呼吸和代谢对缺氧反应的恢复
IF 1.9 4区 医学
Respiratory Physiology & Neurobiology Pub Date : 2024-08-24 DOI: 10.1016/j.resp.2024.104317
Ryan W. Bavis, Darya I. Lee , Annie C. Kinnally, Payton E. Buxton
{"title":"Recovery of ventilatory and metabolic responses to hypoxia in neonatal rats after chronic hypoxia","authors":"Ryan W. Bavis,&nbsp;Darya I. Lee ,&nbsp;Annie C. Kinnally,&nbsp;Payton E. Buxton","doi":"10.1016/j.resp.2024.104317","DOIUrl":"10.1016/j.resp.2024.104317","url":null,"abstract":"<div><p>Chronic hypoxia (CH) during postnatal development attenuates the hypoxic ventilatory response (HVR) in mammals, but there are conflicting reports on whether this plasticity is permanent or reversible. This study tested the hypothesis that CH-induced respiratory plasticity is reversible in neonatal rats and investigated whether the initial plasticity or recovery differs between sexes. Rat pups were exposed to 3 d of normobaric CH (12 % O<sub>2</sub>) beginning shortly after birth. Ventilation and metabolic CO<sub>2</sub> production were then measured in normoxia and during an acute hypoxic challenge (12 % O<sub>2</sub>) immediately following CH and after 1, 4–5, and 7 d in room air. CH pups hyperventilated when returned to normoxia immediately following CH, but normoxic ventilation was similar to age-matched control rats within 7 d after return to room air. The early phase of the HVR (minute 1) was only blunted immediately following the CH exposure, while the late phase of the HVR (minute 15) remained blunted after 1 and 4–5 d in room air; recovery appeared complete by 7 d. However, when normalized to CO<sub>2</sub> production, the late phase of the hypoxic response recovered within only 1 d. The initial blunting of the HVR and subsequent recovery were similar in female and male rats. Carotid body responses to hypoxia (<em>in vitro</em>) were also normal in CH pups after approximately one week in room air. Collectively, these data indicate that ventilatory and metabolic responses to hypoxia recover rapidly in both female and male neonatal rats once normoxia is restored following CH.</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"329 ","pages":"Article 104317"},"PeriodicalIF":1.9,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142073755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信