Islam Ahmed Abdelmawgood , Ayman Saber Mohamed , Noha A. Mahana , Abdel Hady A. Abdel Wahab , Abeer Mahmoud Badr , Asmaa Elsayed Abdelkader
{"title":"Chrysin-loaded PLGA nanoparticle attenuates ferroptosis in lipopolysaccharide-induced indirect acute lung injury by upregulating Nrf2-dependent antioxidant responses","authors":"Islam Ahmed Abdelmawgood , Ayman Saber Mohamed , Noha A. Mahana , Abdel Hady A. Abdel Wahab , Abeer Mahmoud Badr , Asmaa Elsayed Abdelkader","doi":"10.1016/j.resp.2025.104451","DOIUrl":null,"url":null,"abstract":"<div><div>Chrysin (CHR) is the principal active compound in honey, propolis and plants. Its pharmacological effects include anti-inflammatory, antiallergic, and antioxidant capabilities. However, its poor solubility and bioavailability constitute a limitation. In this study, Poly-lactic-co-glycolic acid (PLGA) was used as a nanocarrier to enhance the stability, bioavailability, and effectiveness of CHR to protect mice from indirect acute lung injury (ALI) caused by lipopolysaccharide (LPS). CHR-loaded PLGA nanoparticle (CHR-NP) was prepared and characterized using techniques such as FTIR, zeta potential analysis, DLS, in vitro drug release assessment, encapsulation efficiency measurement, and TEM. Prior to the intraperitoneal injection of LPS (10 mg/kg), C57BL/6 mice were orally administered CHR (50 mg/kg), PLGA (50 mg/kg), CHR-NP (50 mg/kg), and dexamethasone (Dexa) (5 mg/kg) for a duration of six days. Following 24 h of LPS or normal saline (control) injection, the mice were anesthetized. CHR-NP increased catalase, glutathione, and glutathione peroxidase while decreasing malondialdehyde, myeloperoxidase, nitric oxide, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-12, and interferon (IFN)-γ. Moreover, treatment with CHR-NP augmented the gene and protein expression of the Keap1/Nrf2/ARE signaling pathway utilizing quantitative real-time PCR (RT-PCR), western blotting, and immunohistochemistry. Additionally, CHR-NP reduced histological alterations, pulmonary edema, damage, and iron deposition. Our findings indicate that CHR-NP significantly mitigated indirect ALI, possibly through the suppression of inflammation, oxidative stress, and ferroptosis via the activation of the Keap1/Nrf2/ARE signaling pathways.</div></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"336 ","pages":"Article 104451"},"PeriodicalIF":1.9000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Physiology & Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156990482500062X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chrysin (CHR) is the principal active compound in honey, propolis and plants. Its pharmacological effects include anti-inflammatory, antiallergic, and antioxidant capabilities. However, its poor solubility and bioavailability constitute a limitation. In this study, Poly-lactic-co-glycolic acid (PLGA) was used as a nanocarrier to enhance the stability, bioavailability, and effectiveness of CHR to protect mice from indirect acute lung injury (ALI) caused by lipopolysaccharide (LPS). CHR-loaded PLGA nanoparticle (CHR-NP) was prepared and characterized using techniques such as FTIR, zeta potential analysis, DLS, in vitro drug release assessment, encapsulation efficiency measurement, and TEM. Prior to the intraperitoneal injection of LPS (10 mg/kg), C57BL/6 mice were orally administered CHR (50 mg/kg), PLGA (50 mg/kg), CHR-NP (50 mg/kg), and dexamethasone (Dexa) (5 mg/kg) for a duration of six days. Following 24 h of LPS or normal saline (control) injection, the mice were anesthetized. CHR-NP increased catalase, glutathione, and glutathione peroxidase while decreasing malondialdehyde, myeloperoxidase, nitric oxide, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-12, and interferon (IFN)-γ. Moreover, treatment with CHR-NP augmented the gene and protein expression of the Keap1/Nrf2/ARE signaling pathway utilizing quantitative real-time PCR (RT-PCR), western blotting, and immunohistochemistry. Additionally, CHR-NP reduced histological alterations, pulmonary edema, damage, and iron deposition. Our findings indicate that CHR-NP significantly mitigated indirect ALI, possibly through the suppression of inflammation, oxidative stress, and ferroptosis via the activation of the Keap1/Nrf2/ARE signaling pathways.
期刊介绍:
Respiratory Physiology & Neurobiology (RESPNB) publishes original articles and invited reviews concerning physiology and pathophysiology of respiration in its broadest sense.
Although a special focus is on topics in neurobiology, high quality papers in respiratory molecular and cellular biology are also welcome, as are high-quality papers in traditional areas, such as:
-Mechanics of breathing-
Gas exchange and acid-base balance-
Respiration at rest and exercise-
Respiration in unusual conditions, like high or low pressure or changes of temperature, low ambient oxygen-
Embryonic and adult respiration-
Comparative respiratory physiology.
Papers on clinical aspects, original methods, as well as theoretical papers are also considered as long as they foster the understanding of respiratory physiology and pathophysiology.