{"title":"In Situ Hydrogels for Effective Treatment of Cancer: Strategies and Polymers Used.","authors":"Anshula Mehra, Abhay Tharmatt, Navdeep Saini, Gurdeep Singh, Kirandeep Kaur, Gurpreet Singh, Neena Bedi","doi":"10.2174/2667387816666221005102931","DOIUrl":"10.2174/2667387816666221005102931","url":null,"abstract":"<p><p>Cancer is a worldwide health ailment with no known boundaries in terms of mortality and occurrence rates, thus is one of the biggest threats to humankind. Hence, there is an absolute need to develop novel therapeutics to bridge the infirmities associated with chemotherapy and conventional surgical methodologies, including impairment of normal tissue, compromised drug efficiency and an escalation in side effects. In lieu of this, there has been a surge in curiosity towards the development of injectable hydrogels for cancer therapy because local administration of the active pharmaceutical agent offers encouraging advantages such as providing a higher effective dose at the target site, a prolonged retention time of drug, ease of administration, mitigation of dose in vivo, and improved patient compliance. Furthermore, due to their biocompatible nature, such systems can significantly reduce the side effects that occur on long-term exposure to chemotherapy. The present review details the most recent advancements in the in-situ gel forming polymers (natural and synthetic), polymeric cross-linking methodologies and in-situ gelling mechanisms, focusing on their clinical benefits in cancer therapy.</p>","PeriodicalId":20955,"journal":{"name":"Recent advances in drug delivery and formulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33507049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yasmeen Ishaq, Hamna Naeem, Sana Khurshid, Rabia Tabbasam, Zeeshan Haider
{"title":"Doxorubicin Loaded Gold Nanoparticles Mitigate Liver Fibrosis and Inflammatory Cytokines Gene Expression in Rat.","authors":"Yasmeen Ishaq, Hamna Naeem, Sana Khurshid, Rabia Tabbasam, Zeeshan Haider","doi":"10.2174/2667387817666221020090050","DOIUrl":"10.2174/2667387817666221020090050","url":null,"abstract":"<p><strong>Background: </strong>Gold nanoparticles have the potential to be used as a carrier in drug delivery systems due to their small size, large surface area and short circulation time in blood.</p><p><strong>Objective: </strong>This study demonstrates that doxorubicin conjugation with gold nanoparticles (AuNPs) may reduce its toxicity as well as improve therapeutic efficacy.</p><p><strong>Methods: </strong>Five groups of Albino rats were used; 1: healthy control, 2: injured, 3: injured and treated with Dox, 4: injured and treated with AuNPs, 5: injured and treated with AuNPs: Dox. At the end of the experiment, blood and liver tissues were processed for biochemical and histopathological analysis. The expression of collagen, HO-1, IL-6 and TNF-α genes involved in liver fibrosis was observed through real-time PCR.</p><p><strong>Results: </strong>At the end of the experiment, it was observed that the body weights of DOX-treated rats decreased by 0.72%, however, AuNPs and Au: DOX-treated rats were 15.3% and 29.13% respectively. The percentage of liver protection determined through alanine aminotransferase and aspartate aminotransferase levels in DOX, AuNPs and AuNPs: DOX treated groups were 39.21%, 79.26%, 98.17% and 47.77%, 84.17%, 97.92%, respectively, representing better recovering liver in Dox-AuNPs treated rats compared to others. Histopathological and gene expression studies further support the findings. The mRNA expression levels of inflammatory and oxidative stress-related genes HO-1, IL-6 and TNF- α were upregulated in the injured group but downregulated in the treated group.</p><p><strong>Conclusion: </strong>As depicted through biochemical, histopathological and gene expression studies, Au: DOX conjugate group seems to be protective against liver fibrosis.</p>","PeriodicalId":20955,"journal":{"name":"Recent advances in drug delivery and formulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40677606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimizing and Evaluating the Transdermal Permeation of Hydrocortisone Transfersomes Formulation Based on Digital Analysis of the <i>In Vitro</i> Drug Release and <i>Ex Vivo</i> Studies.","authors":"Asmae Abdelwahd, Bazigha K Abdul Rasool","doi":"10.2174/2667387816666220608115605","DOIUrl":"https://doi.org/10.2174/2667387816666220608115605","url":null,"abstract":"<p><strong>Background: </strong>Transfersomes can be used to enhance transdermal drug delivery due to their flexibility and ability to incorporate various molecules. For example, hydrocortisone (HC), a corticosteroid, is taken by different routes and serves as immunosuppressive, anticancer, and antiallergenic; however, it is poorly absorbed by the skin.</p><p><strong>Objective: </strong>Therefore, the current study suggested HC-loaded transfersomes as an alternative route of administration for reaching deeper skin layers or systemic circulation, to reduce the side effects of HC and improve its bioavailability.</p><p><strong>Methods: </strong>HC transfersomes were prepared by the thin-film hydration method and characterized for their vesicular size, zeta potential, drug entrapment efficiency, elasticity, FTIR spectroscopy, in vitro drug release, ex vivo permeation, and irritancy in rabbits. The optimized formulation, F15 (containing HC 20 mg, egg phosphatidylcholine (EPC) 400 mg, and 75 mg of Span 80), was chosen because it showed the highest (p< 0.05) EE% (60.4±0.80) and optimized sustained in vitro drug release (Q8 = 87.9±0.6%).</p><p><strong>Results: </strong>Extensive analysis of the drug release data from all formulas was performed using the DDSolver software which quantitatively confirmed the successful formulation. The Weibull equation was the best model to fit the release data compared to others, and the release mechanism was Fickian diffusion.</p><p><strong>Conclusion: </strong>The simulated pharmacokinetic parameters showed that F15 had the highest AUC, MDT, and DE. Furthermore, F15 significantly enhanced HC permeation by 12-folds compared to the control through the excised rat's skin. The skin irritancy test has proven F15 safety and skin compatibility.</p>","PeriodicalId":20955,"journal":{"name":"Recent advances in drug delivery and formulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10186384/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9474323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Potential Use of Cyclosporine Ultrafine Solution Pressurised Metered- Dose Inhaler in the Treatment of COVID-19 Patients.","authors":"Touraj Ehtezazi","doi":"10.2174/2772574X12666211122113318","DOIUrl":"https://doi.org/10.2174/2772574X12666211122113318","url":null,"abstract":"<p><strong>Introduction: </strong>Serious COVID-19 respiratory problems start when the virus reaches the alveolar level, where type II cells get infected and die. Therefore, virus inhibition at the alveolar level would help preventing these respiratory complications.</p><p><strong>Method: </strong>A literature search was conducted to collect physicochemical properties of small molecule compounds that could be used for the COVID-19 treatment. Compounds with low melting points were selected along with those soluble in ethanol, hydrogen-bond donors, and acceptors.</p><p><strong>Results: </strong>There are severe acute respiratory syndrome coronavirus inhibitors with physicochemical properties suitable for the formulation as an ultrafine pressurised metered-dose inhaler (pMDI). Mycophenolic acid, Debio 025, and cyclosporine A are prime candidates among these compounds. Cyclosporine A (hereafter cyclosporine) is a potent SARS-CoV-2 inhibitor, and it has been used for the treatment of COVID-19 patients, demonstrating an improved survival rate. Also, inhalation therapy of nebulised cyclosporine was tolerated, which was used for patients with lung transplants. Finally, cyclosporine has been formulated as a solution ultrafine pMDI. Although vaccine therapy has started in most countries, inhalation therapies with non-immunological activities could minimise the spread of the disease and be used in vaccine-hesitant individuals.</p><p><strong>Conclusion: </strong>Ultrafine pMDI formulation of cyclosporine or Debio 025 should be investigated for the inhalation therapy of COVID-19.</p>","PeriodicalId":20955,"journal":{"name":"Recent advances in drug delivery and formulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39736848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pharmaceutical Lozenges: Recent Trends and Developments with an Update on Research and Patents.","authors":"Mangesh Pradeep Kulkarni, Arun Sharma, Sagar Tanwar, Parashara Bhattar Vandana, Sheetu Wadhwa, Gurvinder Singh, Pardeep Kumar, Rajesh Kumar","doi":"10.2174/2667387816666211231103759","DOIUrl":"https://doi.org/10.2174/2667387816666211231103759","url":null,"abstract":"<p><p>Pharmaceutical oral dosage forms are tremendously preferred by both consumers as well as pharmaceutical manufacturers owing to the plethora of benefits they offer. Lozenges (LZs) are one of the dosage forms that provide a palatable means of drug administration and have great importance with respect to their pharmaceutical applications. LZs offer additional benefits to pediatric and geriatric patients, along with people having problems associated with the gastro-intestinal tract. Dysphagia is a common problem faced by all age groups, which gives rise to the need for LZs. Moreover, the foremost merit presented by the medicated LZs includes its augmented retention time in the oral cavity that results in an enhanced bioavailability for buccal or upper gastro-intestinal disorders. Further, LZs can also be used to bypass the first-pass effect. The present review covers various aspects of LZs such as formulation, manufacturing techniques, evaluation parameters, marketed products, patents, and a compilation of research work that has been done on lozenges as a delivery system.</p>","PeriodicalId":20955,"journal":{"name":"Recent advances in drug delivery and formulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39775379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fabrication and In Vitro Evaluation of Febuxostat Tablet for Obtaining Biphasic Drug Release Profile.","authors":"Dipika Chavda, Deepika Joshi, Vaishali Thakkar, Tejal Gandhi","doi":"10.2174/2667387817666221116100127","DOIUrl":"10.2174/2667387817666221116100127","url":null,"abstract":"<p><strong>Aim and objective: </strong>The primary aim of the present investigation was to adopt the concept of quality by design (QbD) for developing Febuxostat matrix tablets containing a novel combination of polyethylene oxide (PEO), pre-gelatinized starch (PGS) and lactose for obtaining biphasic drug release.</p><p><strong>Experimental: </strong>Febuxostat-containing matrix tablets were prepared by direct compression using 32 full factorial designs. The tablets were prepared with varying amounts of PEO WSR 301 to PGS and lactose to obtain the desired release pattern. The chosen responses were cumulative % drug released at 1, 6 and 12 hours. The evaluation of tablets was done for pre and post-compressional parameters. Compared with the marketed tablet, the optimized formulations were selected based on in vitro drug release. Dose dumping was checked in the dissolution medium containing up to 40% alcohol.</p><p><strong>Results and discussion: </strong>The results of the dissolution study indicated that the batch containing a 1:1 ratio of PEO WSR 301 and PGS (15 mg each) and 20 mg of Lactose showed fast initial drug release to imitate the pharmacological action followed by sustained drug release effect. The use of Lactose facilitated immediate drug release, while PEO WSR 301 and PGS exhibited the opposite effect on cumulative drug release. The results of the 3<sup>2</sup> Factorial design revealed that the concentration of Lactose is a critical parameter. Dose dumping was not observed in the alcoholic dissolution medium. Kinetic equations were fitted to the dissolution data after 1 hour of the dissolution study.</p><p><strong>Conclusion: </strong>The type (soluble or swellable) and the concentration of excipients (low or high) dictate the tablets' drug release. The study's outcome revealed that the most critical material attribute is the amount of lactose. The novel combination of PEO, PGS and lactose can bypass existing patents and give more industrial applicability.</p>","PeriodicalId":20955,"journal":{"name":"Recent advances in drug delivery and formulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40475308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mirza Shahed Baig, Mohammad Akiful Haque, Teja Kumar Reddy Konatham, Badrud Duza Mohammad, Barrawaz Aateka Yahya, Shaikh Sana Saffiruddin, Falak A Siddiqui, Sharuk L Khan
{"title":"Recent Advancements in Hyperthermia-Driven Controlled Drug Delivery from Nanotherapeutics.","authors":"Mirza Shahed Baig, Mohammad Akiful Haque, Teja Kumar Reddy Konatham, Badrud Duza Mohammad, Barrawaz Aateka Yahya, Shaikh Sana Saffiruddin, Falak A Siddiqui, Sharuk L Khan","doi":"10.2174/2667387816666220902091043","DOIUrl":"10.2174/2667387816666220902091043","url":null,"abstract":"<p><p>Previous reviews of the works on magnetic nanoparticles for hyperthermia-induced treatment concentrated mostly on magnetic fluid hyperthermia (MFH) employing monometallic/metal oxide nanocomposites. In the literature, the word \"hyperthermia\" was also limited to the use of heat for medicinal purposes. A number of articles have recently been published demonstrating that magnetic nanoparticle-based hyperthermia may produce restricted high temperatures, resulting in the release of medicines that are either connected to the magnetic nanoparticles or encased in polymer matrices. In this debate, we propose broadening the concept of \"hyperthermia\" to encompass temperature-based treatment as well as magnetically controlled medication delivery. The review also addresses core-shell magnetic nanomaterials, particularly nanoshells made by stacked assembly, for the use of hyperthermia- based treatment and precise administration of drugs. The primary objective of this review article is to demonstrate how the combination of hyperthermia-induced therapy and on-demand' drug release models may lead to effective applications in personalized medicine.</p>","PeriodicalId":20955,"journal":{"name":"Recent advances in drug delivery and formulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40345801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Patent Review on the Use of L-Asparaginase in the Treatment of Acute Lymphocytic Leukemia.","authors":"Davi Almeida Freire, Ilana Carneiro Lisboa Magalháes, Eridan Orlando Pereira Tramontina Florean, Maria Izabel Florindo Guedes","doi":"10.2174/1872211314666210301125843","DOIUrl":"https://doi.org/10.2174/1872211314666210301125843","url":null,"abstract":"<p><p>L-asparaginase (L-asparagine amino hydrolase, E.C.3.5.1.1) is the most important chemotherapeutic drug used in treating Acute Lymphocytic Leukemia (ALL), decreasing blood asparagine rates causing apoptosis in tumor cells. However, pharmacological drugs cause several side effects making treatments difficult. Thus, searches for new sources of L-asparaginase or enzyme modifications focus on discovering new products to use in therapy. This article reviewed published patents from 2000 to 2020 related to the treatment of ALL using L-asparaginase. Many organisms have been shown as potential viable L-asparaginase producers for use in the treatment of ALL. However, this patent review shows that few of these organisms are gaining attention to becoming bioproducts for the market. It is expected that drugs in the testing phase and patents related to the treatment of ALL and other cancers will become real products. Besides, a treatment using an amino acid depletion approach, now referring to asparagine, altogether with a compound that directly interferes with the expression of the asparagine synthase gene, is more suitable for the treatment of ALL and possibly to other cancers.</p>","PeriodicalId":20955,"journal":{"name":"Recent advances in drug delivery and formulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25448602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"HPMC- A Marvel Polymer for Pharmaceutical Industry-Patent Review.","authors":"Kumar Guarve, Priyanka Kriplani","doi":"10.2174/1872211314666210604120619","DOIUrl":"https://doi.org/10.2174/1872211314666210604120619","url":null,"abstract":"<p><p>At the present time, designing of defined release dosage forms, either controlled, sustained, modified, are gaining much importance. For the development of such delivery systems, proper blend of polymers is required so that drug release occurs by polymer erosion, swelling, diffusion/ dissolution. HPMC (Hydroxypropyl Methylcellulose) is the most commonly used cellulosic polymer available in various grades to develop such types of systems. Depending upon the molecular weight and viscosity chosen, it can be applied for emulsification, adhesion, bonding, thickening, suspension, film forming and gelation. It consists of polymeric units linked together, which retain water, thereby acting as an excellent hydrophilic gel forming polymer. It generally hydrates on the outer surface to form a gelatinous layer. It swells, expands upon contact with water and releases the drug in predetermined manner initially and then forms viscous gel to control the release further. The objective of the present review is to overview the recent patents and articles of HPMC, its properties, grades and its use in various drug delivery systems and as a binder, dispersing agent, bioavailability enhancer and as capsule forming material have been identified and reviewed.</p>","PeriodicalId":20955,"journal":{"name":"Recent advances in drug delivery and formulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39077344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Co-Crystals for Generic Pharmaceuticals: An Outlook on Solid Oral Dosage Formulations.","authors":"Maniyam Arun Pandian Rajendran, Ravikiran Allada, Syed Shahnawaz Sajid","doi":"10.2174/2667387815666210203151209","DOIUrl":"https://doi.org/10.2174/2667387815666210203151209","url":null,"abstract":"<p><p>Co-crystal is an attractive alternative and a new class of solid forms because that can be engineered to have desired physicochemical properties. Co-crystals have gained considerable attention from the generic pharmaceutical industry after the USFDA released its finalized guidlines in the year 2018 on the regulatory classification of co-crystals. In this review, we discussed how co-crystals could be explored as a potential alternative solid form for the development of a generic product that meets the legal, regulatory, and bioequivalence requirements. In the contents, we discussed in detail concepts such as the selection of coformers, various ways of making co-crystals, the strategy of characterization to discriminate between co-crystal and salt, polymorphism in co-crystals, the aspects of intellectual property and, finally, the regulatory aspects of co-crystals.</p>","PeriodicalId":20955,"journal":{"name":"Recent advances in drug delivery and formulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39480751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}