Recent advances in drug delivery and formulation最新文献

筛选
英文 中文
Development of Bromfenac Sodium Loaded Pluronic Nanomicelles: Characterization and Corneal Permeation Study. 溴芬酸钠负载Pluronic纳米胶束的研制:表征及角膜渗透研究。
Recent advances in drug delivery and formulation Pub Date : 2022-01-01 DOI: 10.2174/2667387816666220128123737
Miral Patel, Nithun Saha, Shruti Patel, Priyanka Ahlawat, Abhay Dharamsi, Asha Patel
{"title":"Development of Bromfenac Sodium Loaded Pluronic Nanomicelles: Characterization and Corneal Permeation Study.","authors":"Miral Patel,&nbsp;Nithun Saha,&nbsp;Shruti Patel,&nbsp;Priyanka Ahlawat,&nbsp;Abhay Dharamsi,&nbsp;Asha Patel","doi":"10.2174/2667387816666220128123737","DOIUrl":"https://doi.org/10.2174/2667387816666220128123737","url":null,"abstract":"<p><strong>Background: </strong>The Cataract is the leading cause of visual impairment and preventable blindness worldwide. Cataract removal surgery involves various post-operative complications like pain and inflammation.</p><p><strong>Objectives: </strong>The objective of this study is to screen the polymer concentration as well as optimize the formulation components to develop the pluronic micelles with nanosized characterization and for enhanced corneal permeation study.</p><p><strong>Methodology: </strong>For optimization, Central Composite design was employed to study the effect of independent variables, concentration of Pluronic F 127 (X1) and the concentration of Hyaluronic acid (X2) on chosen responses (Y 1 ) Micelle size, (Y 2 ) Entrapment Efficiency, (Y 3 ) Viscosity. The lyophilised powder was used for physical characterisation.</p><p><strong>Results: </strong>The formulation containing 5%w/v Pluronic F127 and 0.2%w/v Hyaluronic acid was the optimised composition with micelle size and zeta potential 38.74±4.12nm and -17.6±0.1 mV respectively. In-vitro drug release was found to be 91.72±1.2 percentage in 8 hours. Surface morphology revealed micelles were spherical in shape. Ocular irritancy study showed that formulation was safe and non-irritant. In vitro corneal permeation studies through excised rabbit cornea indicated 1.5 fold increase in ocular availability without corneal damage compared to an aqueous suspension containing the same amount of drug in nanomicelles.</p><p><strong>Conclusion: </strong>In a nutshell, Pluronic Nanomicelles would be a platform for the delivery of Bromfenac Sodium.</p>","PeriodicalId":20955,"journal":{"name":"Recent advances in drug delivery and formulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39866139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
General Guide to Publish a Scientific Paper. 发表科学论文的一般指南。
Recent advances in drug delivery and formulation Pub Date : 2022-01-01 DOI: 10.2174/2667387816666220429093958
Brahma N Singh, Stefano Giovagnoli
{"title":"General Guide to Publish a Scientific Paper.","authors":"Brahma N Singh,&nbsp;Stefano Giovagnoli","doi":"10.2174/2667387816666220429093958","DOIUrl":"https://doi.org/10.2174/2667387816666220429093958","url":null,"abstract":"<jats:sec>\u0000<jats:title />\u0000<jats:p />\u0000</jats:sec>","PeriodicalId":20955,"journal":{"name":"Recent advances in drug delivery and formulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40483240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Progress in Hot Melt Extrusion Technology in Pharmaceutical Dosage Form Design. 热熔挤压技术在药物剂型设计中的最新进展。
Recent advances in drug delivery and formulation Pub Date : 2022-01-01 DOI: 10.2174/2667387816666220819124605
Sagar Salave, Kedar Prayag, Dhwani Rana, Prakash Amate, Rupali Pardhe, Ajinkya Jadhav, Anil B Jindal, Derajram Benival
{"title":"Recent Progress in Hot Melt Extrusion Technology in Pharmaceutical Dosage Form Design.","authors":"Sagar Salave,&nbsp;Kedar Prayag,&nbsp;Dhwani Rana,&nbsp;Prakash Amate,&nbsp;Rupali Pardhe,&nbsp;Ajinkya Jadhav,&nbsp;Anil B Jindal,&nbsp;Derajram Benival","doi":"10.2174/2667387816666220819124605","DOIUrl":"https://doi.org/10.2174/2667387816666220819124605","url":null,"abstract":"<p><strong>Background: </strong>The Hot Melt Extrusion (HME) technique has shown tremendous potential in transforming highly hydrophobic crystalline drug substances into amorphous solids without using solvents. This review explores in detail the general considerations involved in the process of HME, its applications and advances.</p><p><strong>Objective: </strong>The present review examines the physicochemical properties of polymers pertinent to the HME process. Theoretical approaches for the screening of polymers are highlighted as a part of successful HME processed drug products. The critical quality attributes associated with the process of HME are also discussed in this review. HME plays a significant role in the dosage form design, and the same has been mentioned with suitable examples. The role of HME in developing several sustained release formulations, films, and implants is described along with the research carried out in a similar domain.</p><p><strong>Methods: </strong>The method includes the collection of data from different search engines like PubMed, ScienceDirect, and SciFinder to get coverage of relevant literature for accumulating appropriate information regarding HME, its importance in pharmaceutical product development, and advanced applications.</p><p><strong>Results: </strong>HME is known to have advanced pharmaceutical applications in the domains related to 3D printing, nanotechnology, and PAT technology. HME-based technologies explored using Design-of- Experiments also lead to the systematic development of pharmaceutical formulations.</p><p><strong>Conclusion: </strong>HME remains an adaptable and differentiated technique for overall formulation development.</p>","PeriodicalId":20955,"journal":{"name":"Recent advances in drug delivery and formulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40626198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
3D-Printed Microfluidics Potential in Combating Future and Current Pandemics (COVID-19). 3d打印微流体在对抗未来和当前流行病(COVID-19)中的潜力。
Recent advances in drug delivery and formulation Pub Date : 2022-01-01 DOI: 10.2174/2667387816666220727101214
Heba A Eassa, Nada A Helal, Ahmed M Amer, Aliaa Fouad, Asser F Bedair, Reem Nagib, Ihab Mansoor, Motaz Hawash, Maha Abdul-Latif, Kamilia H A Mohammed, Mohamed A Helal, Mohamed Ismail Nounou
{"title":"3D-Printed Microfluidics Potential in Combating Future and Current Pandemics (COVID-19).","authors":"Heba A Eassa,&nbsp;Nada A Helal,&nbsp;Ahmed M Amer,&nbsp;Aliaa Fouad,&nbsp;Asser F Bedair,&nbsp;Reem Nagib,&nbsp;Ihab Mansoor,&nbsp;Motaz Hawash,&nbsp;Maha Abdul-Latif,&nbsp;Kamilia H A Mohammed,&nbsp;Mohamed A Helal,&nbsp;Mohamed Ismail Nounou","doi":"10.2174/2667387816666220727101214","DOIUrl":"https://doi.org/10.2174/2667387816666220727101214","url":null,"abstract":"<p><p>Coronavirus disease (COVID-19) emerged in China in December 2019. In March 2020, the WHO declared it a pandemic leading to worldwide lockdowns and travel restrictions. By May, it infected 4,789,205 and killed 318,789 people. This led to severe shortages in the medical sector besides devastating socio-economic effects. Many technologies such as artificial intelligence (AI), virtual reality (VR), microfluidics, 3D printing, and 3D scanning can step into contain the virus and hinder its extensive spread. This article aims to explore the potentials of 3D printing and microfluidic in accelerating the diagnosis and monitoring of the disease and fulfilling the shortages of personal protective equipment (PPE) and medical equipment. It highlights the main applications of 3D printers and microfluidics in providing PPE (masks, respirators, face shields, goggles, and isolation chambers/hoods), supportive care (respiratory equipment) and diagnostic supplies (sampling swabs & lab-on-chip) to ease the COVID-19 pressures. Also, the cost of such technology and regulation considerations are addressed. We conclude that 3D printing provided reusable and low-cost solutions to mitigate the shortages. However, safety, sterility, and compatibility with environmental protection standards need to be guaranteed through standardization and assessment by regulatory bodies. Finally, lessons learned from this pandemic can also help the world prepare for upcoming outbreaks.</p>","PeriodicalId":20955,"journal":{"name":"Recent advances in drug delivery and formulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40636945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Differential Drug Release Kinetics from Paclitaxel-Loaded Polydioxanone Membranes and Capsules. 紫杉醇载聚二氧环酮膜和胶囊的差异药物释放动力学。
Recent advances in drug delivery and formulation Pub Date : 2022-01-01 DOI: 10.2174/2667387816666220707143330
Smrithi Padmakumar, Merin Mary Varghese, Deepthy Menon
{"title":"Differential Drug Release Kinetics from Paclitaxel-Loaded Polydioxanone Membranes and Capsules.","authors":"Smrithi Padmakumar,&nbsp;Merin Mary Varghese,&nbsp;Deepthy Menon","doi":"10.2174/2667387816666220707143330","DOIUrl":"https://doi.org/10.2174/2667387816666220707143330","url":null,"abstract":"<p><strong>Background: </strong>Drug laden implantable systems can provide drug release over several hours to years, which eventually aid in the therapy of both acute and chronic diseases. The present study focuses on a fundamental evaluation of the influence of implant properties such as morphology, architecture, porosity, surface area, and wettability in regulating the drug release kinetics from drug-loaded polymeric matrices.</p><p><strong>Methods: </strong>For this, Polydioxanone (PDS) was selected as the polymer and Paclitaxel (Ptx) as the model drug. Two different forms of the matrix implants, viz., reservoir type capsules developed by dip coating and matrix type membranes fabricated by phase inversion and electrospinning, were utilized for the study. Drug release from all the four different matrices prepared by simple techniques was evaluated in vitro in PBS and ex vivo in peritoneal wash fluid for ~4 weeks. The drug release profiles were thereafter correlated with the physicochemical parameters of the polymeric implants.</p><p><strong>Results: </strong>Reservoir-type capsules followed a slow and steady zero-order kinetics, while matrix-type electrospun and phase inversion membranes displayed typical biphasic kinetics.</p><p><strong>Conclusion: </strong>It was inferred that the slow degradation rate of PDS polymer as well as the implant properties like porosity and wettability play an important role in controlling the drug release rates.</p>","PeriodicalId":20955,"journal":{"name":"Recent advances in drug delivery and formulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40591133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vesicular Approach Review on Nanocarriers bearing Curcumin and Applications. 含姜黄素的纳米载体及其应用的囊状方法综述。
Recent advances in drug delivery and formulation Pub Date : 2022-01-01 DOI: 10.2174/2667387816666220404092415
Prashant Upadhyay, Deepak Singh, Sukirti Upadhyay
{"title":"Vesicular Approach Review on Nanocarriers bearing Curcumin and Applications.","authors":"Prashant Upadhyay, Deepak Singh, Sukirti Upadhyay","doi":"10.2174/2667387816666220404092415","DOIUrl":"10.2174/2667387816666220404092415","url":null,"abstract":"<p><p>Phytoconstituents have been used to treat a variety of human diseases for a long time, but their use in pharmaceuticals is limited because of their low aqueous solubility. Researchers have created vesicular systems to address many of the issues associated with the bioavailability and therapeutic efficacy of poorly water-soluble drugs and target the drug to the desired location in the body. Several vesicular nanocarrier systems have been developed. Review contrasts various vesicular drug delivery systems, including liposomes, sphingosomes, emulsomes, niosomes, ethosomes, virosomes, phytosomes, aquasomes, proniosomes, transferosomes, and pharmacosomes. Vesicular drug delivery technologies have sparked a scientific revolution, leading to the creation of innovative dosage forms. The present review focuses on the preparation, characterization, drug release, current market scenarios, and future trends of nanocarriers. A variety of novel drug delivery systems have arisen, involving different routes of administration to achieve safe and targeted drug delivery. This review aims to illustrate the applications, advantages, and disadvantages of the vesicular approach based on nanocarriers bearing curcumin which is widely used in gene delivery, tumor-targeting to the brain, oral formulations, and helps resolve various problems associated with drug stability and permeability issues.</p>","PeriodicalId":20955,"journal":{"name":"Recent advances in drug delivery and formulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75782003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ROS Modulating Inorganic Nanoparticles: A Novel Cancer Therapeutic Tool. ROS调节无机纳米颗粒:一种新的癌症治疗工具。
Recent advances in drug delivery and formulation Pub Date : 2022-01-01 DOI: 10.2174/2667387816666220506203123
Maria John Newton Amaldoss, Charles Christopher Sorrell
{"title":"ROS Modulating Inorganic Nanoparticles: A Novel Cancer Therapeutic Tool.","authors":"Maria John Newton Amaldoss,&nbsp;Charles Christopher Sorrell","doi":"10.2174/2667387816666220506203123","DOIUrl":"https://doi.org/10.2174/2667387816666220506203123","url":null,"abstract":"<p><p>The term \"reactive oxygen species\" (ROS) refers to a family of extremely reactive molecules. They are crucial as secondary messengers in both physiological functioning and the development of cancer. Tumors have developed the ability to survive at elevated ROS levels with significantly higher H2O2 levels than normal tissues. Chemodynamic therapy is a novel approach to cancer treatment that generates highly toxic hydroxyl radicals via a Fenton/Fenton-like reaction between metals and peroxides. Inorganic nanoparticles cause cytotoxicity by releasing ROS. Inorganic nanoparticles can alter redox homoeostasis by generating ROS or diminishing scavenging mechanisms. Internalized nanoparticles generate ROS in biological systems independent of the route of internalisation. This method of producing ROS could be employed to kill cancer cells as a therapeutic strategy. ROS also play a role in regulating the development of normal stem cells, as excessive ROS disturb the stem cells' regular biological cycles. ROS treatment has a significant effect on normal cellular function. Mitochondrial ROS are at the centre of metabolic changes and control a variety of other cellular processes, which can lead to medication resistance in cancer patients. As a result, utilising ROS in therapeutic applications can be a double-edged sword that requires better understanding.</p>","PeriodicalId":20955,"journal":{"name":"Recent advances in drug delivery and formulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10184222/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9841704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Recent Patents on Nasal Vaccines Containing Nanoadjuvants. 含纳米佐剂鼻用疫苗的最新专利
Recent advances in drug delivery and formulation Pub Date : 2022-01-01 DOI: 10.2174/2667387816666220420124648
Francesco Candela, Eride Quarta, Francesca Buttini, Adolfo Ancona, Ruggero Bettini, Fabio Sonvico
{"title":"Recent Patents on Nasal Vaccines Containing Nanoadjuvants.","authors":"Francesco Candela,&nbsp;Eride Quarta,&nbsp;Francesca Buttini,&nbsp;Adolfo Ancona,&nbsp;Ruggero Bettini,&nbsp;Fabio Sonvico","doi":"10.2174/2667387816666220420124648","DOIUrl":"https://doi.org/10.2174/2667387816666220420124648","url":null,"abstract":"<p><p>Vaccines are one of the greatest medical achievements of modern medicine. The nasal mucosa represents an effective route of vaccination for both mucosal immunity and peripheral, being at the same time an inductive and effector site of immunity. In this paper, the innovative and patented compositions and manufacturing procedures of nanomaterials have been studied using the peerreviewed research literature. Nanomaterials have several properties that make them unique as adjuvant for vaccines. Nanoadjuvants through the influence of antigen availability over time affect the immune response. Namely, the amount of antigen reaching the immune system or its release over prolonged periods of time can be effectively increased by nanoadjuvants. Mucosal vaccines are an interesting alternative for immunization of diseases in which pathogens access the body through these epithelia. Nanometric adjuvants are not only a viable approach to improve the efficacy of nasal vaccines but in most of the cases they represent the core of the intellectual property related to the innovative vaccine.</p>","PeriodicalId":20955,"journal":{"name":"Recent advances in drug delivery and formulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10184237/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9470247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A Comprehensive Insight on Self Emulsifying Drug Delivery Systems. 自乳化给药系统的全面研究。
Recent advances in drug delivery and formulation Pub Date : 2022-01-01 DOI: 10.2174/2667387815666211207112803
Renu Kadian, Arun Nanda
{"title":"A Comprehensive Insight on Self Emulsifying Drug Delivery Systems.","authors":"Renu Kadian,&nbsp;Arun Nanda","doi":"10.2174/2667387815666211207112803","DOIUrl":"https://doi.org/10.2174/2667387815666211207112803","url":null,"abstract":"<p><strong>Background: </strong>The oral route is a highly recommended route for the delivery of a drug. But most lipophilic drugs are difficult to deliver via this route due to their low aqueous solubility. Selfemulsifying drug delivery systems (SEDDS) have emerged as a potential approach of increasing dissolution of a hydrophobic drug due to spontaneous dispersion in micron or nano sized globules in the GI tract under mild agitation.</p><p><strong>Objective: </strong>The main motive of this review article is to describe the mechanisms, advantages, disadvantages, factors affecting, effects of excipients, possible mechanisms of enhancing bioavailability, and evaluation of self-emulsifying drug delivery systems.</p><p><strong>Results: </strong>Self emulsifying systems incorporate the hydrophobic drug inside the oil globules, and a monolayer is formed by surfactants to provide the low interfacial tension, which leads to improvement in the dissolution rate of hydrophobic drugs. The globule size of self-emulsifying systems depends upon the type and ratio of excipients in which they are used. The ternary phase diagram is constructed to find out the range of concentration of excipients used. This review article also presents recent and updated patents on self-emulsifying drug delivery systems. Self-emulsifying systems have the ability to enhance the oral bioavailability and solubility of lipophilic drugs.</p><p><strong>Conclusion: </strong>This technique offers further advantages such as bypassing the first pass metabolism via absorption of drugs through the lymphatic system, easy manufacturing, reducing enzymatic hydrolysis, inter and intra subject variability, and food effects.</p>","PeriodicalId":20955,"journal":{"name":"Recent advances in drug delivery and formulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39813385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Tertiary Nanosystem Composed of Graphene Quantum Dots, Levofloxacin and Silver Nitrate for Microbiological Control. 由石墨烯量子点、左氧氟沙星和硝酸银组成的三级纳米系统用于微生物控制。
Recent advances in drug delivery and formulation Pub Date : 2022-01-01 DOI: 10.2174/2667387816666220715121107
Thamires Oliveira Vieira, Eduardo Ricci-Junior, Aline Oiveira da Silva de Barros, Luciana Magalhães Rebelo Alencar, Marcia Regina Spuri Ferreira, Terezinha de Jesus Andreoli Pinto, Ralph Santos-Oliveira, Diego de Holanda Saboya Souza
{"title":"Tertiary Nanosystem Composed of Graphene Quantum Dots, Levofloxacin and Silver Nitrate for Microbiological Control.","authors":"Thamires Oliveira Vieira,&nbsp;Eduardo Ricci-Junior,&nbsp;Aline Oiveira da Silva de Barros,&nbsp;Luciana Magalhães Rebelo Alencar,&nbsp;Marcia Regina Spuri Ferreira,&nbsp;Terezinha de Jesus Andreoli Pinto,&nbsp;Ralph Santos-Oliveira,&nbsp;Diego de Holanda Saboya Souza","doi":"10.2174/2667387816666220715121107","DOIUrl":"https://doi.org/10.2174/2667387816666220715121107","url":null,"abstract":"<p><strong>Background: </strong>Infectious diseases have the highest mortality rate in the world and these numbers are associated with scarce and/or ineffective diagnosis and bacterial resistance. Currently, with the development of new pharmaceutical formulations, nanotechnology is gaining prominence.</p><p><strong>Methods: </strong>Nanomicelles were produced by ultrasonication. The particle size and shape were evaluated by scanning electron microscopy and confirmed by dynamic light scattering, also thermogravimetric analysis was performed to evaluate the thermal stability. Finally, antibacterial activity has been performed.</p><p><strong>Results: </strong>The results showed that a rod-shaped nanosystem, with 316.1 nm and PDI of 0.243 was formed. The nanosystem was efficient against Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus subtilis subsp. spizizenii with MIC inferior to 0.98 and a synergistic effect between silver graphene quantum dots and levofloxacin was observed.</p><p><strong>Conclusion: </strong>The nanosystem produced may rise as a promising agent against the bacterial threat, especially regarding bacterial resistance.</p>","PeriodicalId":20955,"journal":{"name":"Recent advances in drug delivery and formulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40534448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信