纳米疗法在热疗驱动可控给药方面的最新进展。

Mirza Shahed Baig, M Akiful Haque, Teja Kumar Reddy Konatham, Badrud Duza Mohammad, Barrawaz Aateka Yahya, Shaikh Sana Saffiruddin, Falak A Siddiqui, Sharuk L Khan
{"title":"纳米疗法在热疗驱动可控给药方面的最新进展。","authors":"Mirza Shahed Baig, M Akiful Haque, Teja Kumar Reddy Konatham, Badrud Duza Mohammad, Barrawaz Aateka Yahya, Shaikh Sana Saffiruddin, Falak A Siddiqui, Sharuk L Khan","doi":"10.2174/2667387816666220902091043","DOIUrl":null,"url":null,"abstract":"<p><p>Previous reviews of the works on magnetic nanoparticles for hyperthermia induced treatment concentrated mostly on magnetic fluid hyperthermia (MFH) employing monometallic/metal oxide nanocomposites. In the literature, the word \"hyperthermia\" was also limited to the use of heat for medicinal purposes. A number of publications have recently been published demonstrating that magnetic nanoparticle-based hyperthermia may produce restricted high temperatures, resulting in the release of medicines that are either connected to the magnetic nanoparticles or encased in polymer matrices. In this debate, we propose broadening the concept of \"hyperthermia\" to encompass temperature-based treatment as well as magnetically controlled medication delivery. The review also addresses core-shell magnetic nanomaterials, particularly nanoshells made by stacked assembly, for the use of hyperthermia-based treatment and precise administration of drugs. The primary objective of this review article is to demonstrate how the combination of hyperthermia-induced therapy and 'on demand' drug release models may lead to effective applications in personalized medicine.</p>","PeriodicalId":20955,"journal":{"name":"Recent advances in drug delivery and formulation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advancements on hyperthermia driven controlled drug delivery from nanotherapeutics.\",\"authors\":\"Mirza Shahed Baig, M Akiful Haque, Teja Kumar Reddy Konatham, Badrud Duza Mohammad, Barrawaz Aateka Yahya, Shaikh Sana Saffiruddin, Falak A Siddiqui, Sharuk L Khan\",\"doi\":\"10.2174/2667387816666220902091043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Previous reviews of the works on magnetic nanoparticles for hyperthermia induced treatment concentrated mostly on magnetic fluid hyperthermia (MFH) employing monometallic/metal oxide nanocomposites. In the literature, the word \\\"hyperthermia\\\" was also limited to the use of heat for medicinal purposes. A number of publications have recently been published demonstrating that magnetic nanoparticle-based hyperthermia may produce restricted high temperatures, resulting in the release of medicines that are either connected to the magnetic nanoparticles or encased in polymer matrices. In this debate, we propose broadening the concept of \\\"hyperthermia\\\" to encompass temperature-based treatment as well as magnetically controlled medication delivery. The review also addresses core-shell magnetic nanomaterials, particularly nanoshells made by stacked assembly, for the use of hyperthermia-based treatment and precise administration of drugs. The primary objective of this review article is to demonstrate how the combination of hyperthermia-induced therapy and 'on demand' drug release models may lead to effective applications in personalized medicine.</p>\",\"PeriodicalId\":20955,\"journal\":{\"name\":\"Recent advances in drug delivery and formulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent advances in drug delivery and formulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2667387816666220902091043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent advances in drug delivery and formulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2667387816666220902091043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

以往关于磁性纳米粒子用于热疗的综述主要集中在采用单金属/金属氧化物纳米复合材料的磁性流体热疗(MFH)方面。在文献中,"热疗 "一词也仅限于将热量用于医疗目的。最近发表的一些出版物表明,基于磁性纳米粒子的热疗可产生限制性高温,从而释放出与磁性纳米粒子相连或包裹在聚合物基质中的药物。在这场辩论中,我们建议拓宽 "热疗 "的概念,使其包括基于温度的治疗以及磁控给药。本综述还讨论了芯壳磁性纳米材料,特别是通过堆叠组装制成的纳米壳,用于基于热疗的治疗和精确给药。这篇综述文章的主要目的是展示热敏疗法与 "按需 "药物释放模式的结合如何在个性化医疗中实现有效应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent advancements on hyperthermia driven controlled drug delivery from nanotherapeutics.

Previous reviews of the works on magnetic nanoparticles for hyperthermia induced treatment concentrated mostly on magnetic fluid hyperthermia (MFH) employing monometallic/metal oxide nanocomposites. In the literature, the word "hyperthermia" was also limited to the use of heat for medicinal purposes. A number of publications have recently been published demonstrating that magnetic nanoparticle-based hyperthermia may produce restricted high temperatures, resulting in the release of medicines that are either connected to the magnetic nanoparticles or encased in polymer matrices. In this debate, we propose broadening the concept of "hyperthermia" to encompass temperature-based treatment as well as magnetically controlled medication delivery. The review also addresses core-shell magnetic nanomaterials, particularly nanoshells made by stacked assembly, for the use of hyperthermia-based treatment and precise administration of drugs. The primary objective of this review article is to demonstrate how the combination of hyperthermia-induced therapy and 'on demand' drug release models may lead to effective applications in personalized medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信