{"title":"In-vitro cellular and in-vivo investigation of ascorbic acid and β-glycerophosphate loaded gelatin/sodium alginate injectable hydrogels for urinary incontinence treatment.","authors":"Hessam Rezaei, Azadeh Asefnejad, Morteza Daliri-Joupari, Sedigheh Joughehdoust","doi":"10.1007/s40204-021-00160-9","DOIUrl":"10.1007/s40204-021-00160-9","url":null,"abstract":"<p><p>Urinary incontinence is one of the most common disorders especially in adult women. In this study, cellular and in-vivo analyses were performed on (3-glycidyloxypropyl) trimethoxysilane (GPTMS) and CaCl<sub>2</sub> cross-linked alginate and gelatin hydrogels containing β-glycerophosphate and ascorbic acid to evaluate the regenerative potential as injectable compression agents for the treatment of urinary incontinence. The hydrogels were prepared with different percentages of components and were named as GA1 (7.2% w/v gelatin, 6% w/v sodium alginate, 0.5:1w/w GPTMS, CaCl<sub>2</sub> 1% (wt) sodium alginate, 50 μg/mL ascorbic acid, 1.5 mg/mL β-glycerophosphate), GA2 (10% w/v gelatin, 8.5% w/v sodium alginate, 0.5:1 w/w GPTMS, CaCl<sub>2</sub> 1% (wt) sodium alginate, 50 μg/mL ascorbic acid, 1.5 mg/mL β-glycerophosphate), and GA3 (10% (w/v) gelatin, 8.5% w/v sodium alginate, 1:1 w/w GPTMS, CaCl<sub>2</sub> 1% (wt) sodium alginate, 50 μg/mL ascorbic acid, 1.5 mg/mL β-glycerophosphate) hydrogels. The results of cell studies showed that although all three samples supported cell adhesion and survival, the cellular behavior of the GA2 sample was better than the other samples. Animal tests were performed on the optimal GA2 sample, which showed that this hydrogel repaired the misfunction tissue in a rat model within 4 weeks and the molecular layer thickness was reached the normal tissue after this duration. It seems that these hydrogels, especially GA2 sample containing 10% (w/v) gelatin, 8.5% (w/v) sodium alginate, 0.5:1 (w/w) GPTMS, CaCl<sub>2</sub> 1% (wt) sodium alginate, 50 μg/mL ascorbic acid, and 1.5 mg/mL β-glycerophosphate, can act as an injetable hydrogel for urinary incontinence treatment without the need for repeating the injection.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271082/pdf/40204_2021_Article_160.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39025666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cell encapsulated and microenvironment modulating microbeads containing alginate hydrogel system for bone tissue engineering.","authors":"Induvahi Veernala, Purandhi Roopmani, Ruby Singh, Uzma Hasan, Jyotsnendu Giri","doi":"10.1007/s40204-021-00158-3","DOIUrl":"https://doi.org/10.1007/s40204-021-00158-3","url":null,"abstract":"<p><p>Functional tissue regeneration using synthetic biomaterials requires proliferation and heterotypic differentiation of stem/progenitor cells within a specialized heterogeneous (biophysical-biochemical) microenvironment. The current techniques have limitations to develop synthetic hydrogels, mimicking native extracellular matrix porosity along with heterogeneous microenvironmental cues of matrix mechanics, degradability, microstructure and cell-cell interactions. Here, we have developed a microenvironment modulating system to fabricate in situ porous hydrogel matrix with two or more distinct tailored microenvironmental niches within microbeads and the hydrogel matrix for multicellular tissue regeneration. Electrosprayed pectin-gelatin blended microbeads and crosslinked alginate hydrogel system help to tailor microenvironmental niches of encapsulated cells where two different cells are surrounded by a specific microenvironment. The effect of different microenvironmental parameters associated with the microbead/hydrogel matrix was evaluated using human umbilical-cord mesenchymal stem cells (hUCMSCs). The osteogenic differentiation of hUCMSCs in the hydrogel matrix was evaluated for bone tissue regeneration. This will be the first report on microenvironment modulating microbead-hydrogel system to encapsulate two/more types of cells in a hydrogel, where each cell is surrounded with distinct niches for heterogeneous tissue regeneration.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40204-021-00158-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39152106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Progress in BiomaterialsPub Date : 2021-06-01Epub Date: 2021-06-02DOI: 10.1007/s40204-021-00157-4
B Sowmya, A B Hemavathi, P K Panda
{"title":"Poly (ε-caprolactone)-based electrospun nano-featured substrate for tissue engineering applications: a review.","authors":"B Sowmya, A B Hemavathi, P K Panda","doi":"10.1007/s40204-021-00157-4","DOIUrl":"10.1007/s40204-021-00157-4","url":null,"abstract":"<p><p>The restoration of normal functioning of damaged body tissues is one of the major objectives of tissue engineering. Scaffolds are generally used as artificial supports and as substrates for regenerating new tissues and should closely mimic natural extracellular matrix (ECM). The materials used for fabricating scaffolds must be biocompatible, non-cytotoxic and bioabsorbable/biodegradable. For this application, specifically biopolymers such as PLA, PGA, PTMC, PCL etc. satisfying the above criteria are promising materials. Poly(ε-caprolactone) (PCL) is one such potential candidate which can be blended with other materials forming blends, copolymers and composites with the essential physiochemical and mechanical properties as per the requirement. Nanofibrous scaffolds are fabricated by various techniques such as template synthesis, fiber drawing, phase separation, self-assembly, electrospinning etc. Among which electrospinning is the most popular and versatile technique. It is a clean, simple, tunable and viable technique for fabrication of polymer-based nanofibrous scaffolds. The design and fabrication of electrospun nanofibrous scaffolds are of intense research interest over the recent years. These scaffolds offer a unique architecture at nano-scale with desired porosity for selective movement of small molecules and form a suitable three-dimensional matrix similar to ECM. This review focuses on PCL synthesis, modifications, properties and scaffold fabrication techniques aiming at the targeted tissue engineering applications.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40204-021-00157-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39051534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Progress in BiomaterialsPub Date : 2021-06-01Epub Date: 2021-07-02DOI: 10.1007/s40204-021-00159-2
Fatemeh Zamani, Mohammad Amani Tehran, Atiyeh Abbasi
{"title":"Fabrication of PCL nanofibrous scaffold with tuned porosity for neural cell culture.","authors":"Fatemeh Zamani, Mohammad Amani Tehran, Atiyeh Abbasi","doi":"10.1007/s40204-021-00159-2","DOIUrl":"https://doi.org/10.1007/s40204-021-00159-2","url":null,"abstract":"<p><p>In tissue engineering, the structure of nanofibrous scaffolds and optimization of their properties play important role in the enhancement of cell growth and proliferation. Therefore, the basic idea of the current study is to find a proper method for tuning the extent of porosity of the scaffold, study the effect of porosity on the cell growth, and optimize the extent of porosity with the aim of achieving the maximum cell growth. To tune the scaffold's porosity, four types of metal mesh with different mesh sizes were employed as collectors. For this purpose, the structural properties of polycaprolactone nanofibrous layers which were electrospun on collectors, and the level of neural A-172 cell growth on layers were investigated, and the results were compared with the results attained for the fabricated nanofibrous layer on a flat aluminum collector. It was found that upon changing the porosity of the metal mesh as collector, the fibers' diameter would be inevitably changed, albeit insignificantly, and following no specific trends. However, changing the mesh size has shown a significant effect on the thickness and porosity of nanofibrous layer. According to the MTT assay results, the optimum neural cell growth was observed for the electrospun nanofibrous scaffold with the porosity of 96% and pore size of (0.42-23 µm) which has been fabricated on the type-4 collector having a mesh size of 10. The fabricated scaffold using this mesh with the optimum extent of porosity (58%) resulted in 44% enhancement in the cell growth as compared with the fabricated layer on the flat collector.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40204-021-00159-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39143153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Polymers in topical delivery of anti-psoriatic medications and other topical agents in overcoming the barriers of conventional treatment strategies.","authors":"Krishna Yadav, Akanksha Soni, Deependra Singh, Manju Rawat Singh","doi":"10.1007/s40204-021-00154-7","DOIUrl":"https://doi.org/10.1007/s40204-021-00154-7","url":null,"abstract":"<p><p>In recent decades, topical treatments to dermal disorders have shown ineffectiveness in delivering the medication at a particular location without a suitable drug carrier. Psoriasis treatment is hindered because of the ineffective delivery and efficacy of conventional pharmaceutical treatment. In conventional medication formulation approach, it is difficult to breach the transdermal layer of a skin membrane for topical drugs, i.e. cyclosporine, methotrexate. This problem is further complicated by extreme disease-associated conditions such as hyperkeratosis and irritation. Intending to assure better drug delivery carriers, this review emphasizes the therapeutic efficacy of polymers and their potential to deliver the drug into the deeper layer of the skin membrane. The polymers are essential in structural and physiochemical perspectives as it works as a carrier for the medication. A vast variety of delivery carriers is available nowadays but their applicability in such dermal cases like psoriasis is still lacking due to less knowledge on an appropriate polymer. The current investigation of suitable polymer would assist in brushing our expertise to optimize the advantages of a wide spectrum of polymers to fulfill the topical targeting of psoriasis.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40204-021-00154-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25493994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Progress in BiomaterialsPub Date : 2021-03-01Epub Date: 2021-03-26DOI: 10.1007/s40204-021-00150-x
Sreekanth Sreekumaran, Anitha Radhakrishnan, Arun A Rauf, G Muraleedhara Kurup
{"title":"Nanohydroxyapatite incorporated photocrosslinked gelatin methacryloyl/poly(ethylene glycol)diacrylate hydrogel for bone tissue engineering.","authors":"Sreekanth Sreekumaran, Anitha Radhakrishnan, Arun A Rauf, G Muraleedhara Kurup","doi":"10.1007/s40204-021-00150-x","DOIUrl":"https://doi.org/10.1007/s40204-021-00150-x","url":null,"abstract":"<p><p>The development of novel strategies that aim to augment the regenerative potential of bone is critical for devising better treatment options for bone defects or injuries. Facilitation of bone repair and regeneration utilizing composite hydrogels that simulates bone matrix is emerging as a viable approach in bone tissue engineering. The present study aimed to develop nanohydroxyapatite-incorporated gelatin methacryloyl (GelMA)/poly(ethylene glycol) diacrylate (PEGDA) hydrogel (GMPH hydrogel). A facile blending and photocrosslinking approach was employed to incorporate nanohydroxyapatite into the inter-crosslinked polymeric hydrogel network to obtain an ECM mimicking matrix for assisting bone tissue regeneration. Chemical characterization of GelMA and the GMPH hydrogel was carried out using FTIR and <sup>1</sup>H NMR. Physical properties of GMPH, such as gelation, swelling and degradation ratios, and internal morphology, signified the suitability of GMPH hydrogel for tissue engineering. Cell viability assay demonstrated a healthy proliferation of MG63 osteoblast cells in GMPH hydrogel extracted growth medium, indicating the hydrogel's cytocompatibility and suitability for bone tissue engineering. Our study documented the fabrication of a novel GelMA/PEGDA-nanohydroxyapatite hydrogel that possesses ideal physicochemical and biological properties for bone tissue engineering.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40204-021-00150-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25528306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preparation, optimization, and evaluation of midazolam nanosuspension: enhanced bioavailability for buccal administration.","authors":"Arezou Soroushnia, Fariba Ganji, Ebrahim Vasheghani-Farahani, Hamid Mobedi","doi":"10.1007/s40204-020-00148-x","DOIUrl":"https://doi.org/10.1007/s40204-020-00148-x","url":null,"abstract":"<p><p>Midazolam is considered as one of the best first-line drugs in managing status epilepticus in children who require emergency drug treatment. Due to poor water solubility, oral bioavailability of midazolam is relatively low. To improve its dissolution and absorption, midazolam nano-suspensions were formulated with different stabilizers using the ultrasonic technique. A combination of Tween 80 and Poloxamer (TP) was considered as one stabilizer and 3-methyl chitosan (TMC) as another stabilizer. The ratio of the stabilizers was selected as an independent variable, and their effects on the particle size and the zeta potential were evaluated by the simplex lattice mixture method. The freeze-dried optimized midazolam nano-suspension powder was characterized by particle-size analysis, SEM, the stability test, and the dissolution test. The optimized midazolam nano-suspension (containing 76% TMC and 24% TP) had a mean particle size of 197 ± 7 nm and a zeta potential of 31 ± 4 (mV). The stability test showed that the midazolam nano-suspension is stable for 12 months. In the in vitro dissolution test, the midazolam nano-suspension showed a marked increase in the drug dissolution percentage versus coarse midazolam. In the in vivo evaluation, the midazolam nano-suspension exhibited a significant increase in the C<sub>max</sub> and the AUC<sub>0-</sub>5, and a major decrease in T<sub>max</sub>. The overall results indicate the nano-suspension of midazolam is a promising candidate for managing status epilepticus in children in emergency situation.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40204-020-00148-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25370637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Progress in BiomaterialsPub Date : 2021-03-01Epub Date: 2021-03-08DOI: 10.1007/s40204-021-00151-w
Farshad Moharrami Kasmaie, Fatemeh Zamani, Sara Sayad-Fathi, Arash Zaminy
{"title":"Promotion of nerve regeneration by biodegradable nanofibrous scaffold following sciatic nerve transection in rats.","authors":"Farshad Moharrami Kasmaie, Fatemeh Zamani, Sara Sayad-Fathi, Arash Zaminy","doi":"10.1007/s40204-021-00151-w","DOIUrl":"https://doi.org/10.1007/s40204-021-00151-w","url":null,"abstract":"<p><p>Peripheral nerve injuries (PNIs) are one of the common causes of morbidity and disability worldwide. Autograft is considered the gold standard treatment for PNIs. However, due to the complications associated with autografts, other sources are considered as alternatives. Recently, electrospun nanofibrous scaffolds have received wide attention in the field of tissue engineering. Exogenous tubular constructs with uniaxially aligned topographical cues to enhance the axonal re-growth are needed to bridge large nerve gaps between proximal and distal ends. Although several studies have used PLGA/PCL, but few studies have been conducted on developing a two-layer scaffold with aligned fibers properly orientated along the axis direction of the sciatic nerve to meet the physical properties required for suturing, transplantation, and nerve regeneration. In this study, we sought to design and develop PLGA-PCL-aligned nanofibers. Following the conventional examinations, we implanted the scaffolds into 7-mm sciatic nerve gaps in a rat model of nerve injury. Our in vivo evaluations did not show any adverse effects, and after eight weeks, an acceptable improvement was noted in the electrophysiological, functional, and histological analyses. Thus, it can be concluded that nanofiber scaffolds can be used as a reliable approach for repairing PNIs. However, further research is warranted.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40204-021-00151-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25447695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Progress in BiomaterialsPub Date : 2021-03-01Epub Date: 2021-03-26DOI: 10.1007/s40204-021-00155-6
Pooyan Makvandi, Milad Ashrafizadeh, Matineh Ghomi, Masoud Najafi, Hamid Heydari Sheikh Hossein, Ali Zarrabi, Virgilio Mattoli, Rajender S Varma
{"title":"Injectable hyaluronic acid-based antibacterial hydrogel adorned with biogenically synthesized AgNPs-decorated multi-walled carbon nanotubes.","authors":"Pooyan Makvandi, Milad Ashrafizadeh, Matineh Ghomi, Masoud Najafi, Hamid Heydari Sheikh Hossein, Ali Zarrabi, Virgilio Mattoli, Rajender S Varma","doi":"10.1007/s40204-021-00155-6","DOIUrl":"https://doi.org/10.1007/s40204-021-00155-6","url":null,"abstract":"<p><p>Injectable materials have shown great potential in tissue engineering applications. However, bacterial infection is one of the main challenges in using these materials in the field of regenerative medicine. In this study, biogenically synthesized silver nanoparticle-decorated multi-walled carbon nanotubes (Ag/MWCNTs) were deployed for adorning biogenic-derived AgNPs which were subsequently used in the preparation of thermosensitive hydrogels based on hyaluronic acid encompassing these green-synthesized NPs. The antibacterial capacity of AgNPs decorated on MWCNTs synthesized through Camellia sinensis extract in an organic solvent-free medium displayed a superior activity by inhibiting the growth of Gram-negative (E. coli and Klebsiella) and Gram-positive (S. aureus and E. faecalis). The injectable hydrogel nanocomposites demonstrated good mechanical properties, as well. The thermosensitive hyaluronic acid-based hydrogels also exhibited T<sub>gel</sub> below the body temperature, indicating the transition from liquid-like behavior to elastic gel-like behavior. Such a promising injectable nanocomposite could be applied as liquid, pomade, or ointment to enter wound cavities or bone defects and subsequently its transition in situ to gel form at human body temperature bodes well for their immense potential application in the biomedical sector.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40204-021-00155-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25517756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tissue engineering of collagen scaffolds crosslinked with plant based polysaccharides.","authors":"Rohit Rekulapally, K Udayachandrika, Sirisha Hamlipur, Anuja Sasidharan Nair, Biswajit Pal, Shashi Singh","doi":"10.1007/s40204-021-00149-4","DOIUrl":"10.1007/s40204-021-00149-4","url":null,"abstract":"<p><p>Ideally, a bioscaffold should mimic the characteristics of an extracellular matrix of a living organ of interest. The present study deals with the formation of composite scaffolds of collagen with gum arabic. Collagen was cross-linked with oxidized gum arabic having aldehyde groups to form a porous block. By changing the oxidation level of gum arabic, incorporation of the polysaccharides into the scaffold could be varied resulting in scaffolds with variable polysaccharide to protein content. A series of scaffolds were made by altering collagen concentration and oxidation level of gum arabic. The scaffolds were tested for their physical properties, stability, biocompatibility and ability to support the cell growth. Results implied that variable polysaccharide incorporation into the scaffolds was possible depending on the oxidation level of gum arabic which could influence the swelling behavior. The scaffolds showed non-toxic behavior towards the mesenchymal stem cells and nucleus pulposa cells using viability assay in culture conditions up to 30 days; the growth of cells was seen at all combinations of gels. Nucleus pulposa cells were able to maintain their phenotype in the GACO gels. The studies show that these scaffolds are potential candidates in applications, such as tissue engineering, and can be designed to match the requirement of different cell/tissues as per their ECM.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8021656/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25388218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}