Injectable hyaluronic acid-based antibacterial hydrogel adorned with biogenically synthesized AgNPs-decorated multi-walled carbon nanotubes.

IF 4.4 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Progress in Biomaterials Pub Date : 2021-03-01 Epub Date: 2021-03-26 DOI:10.1007/s40204-021-00155-6
Pooyan Makvandi, Milad Ashrafizadeh, Matineh Ghomi, Masoud Najafi, Hamid Heydari Sheikh Hossein, Ali Zarrabi, Virgilio Mattoli, Rajender S Varma
{"title":"Injectable hyaluronic acid-based antibacterial hydrogel adorned with biogenically synthesized AgNPs-decorated multi-walled carbon nanotubes.","authors":"Pooyan Makvandi,&nbsp;Milad Ashrafizadeh,&nbsp;Matineh Ghomi,&nbsp;Masoud Najafi,&nbsp;Hamid Heydari Sheikh Hossein,&nbsp;Ali Zarrabi,&nbsp;Virgilio Mattoli,&nbsp;Rajender S Varma","doi":"10.1007/s40204-021-00155-6","DOIUrl":null,"url":null,"abstract":"<p><p>Injectable materials have shown great potential in tissue engineering applications. However, bacterial infection is one of the main challenges in using these materials in the field of regenerative medicine. In this study, biogenically synthesized silver nanoparticle-decorated multi-walled carbon nanotubes (Ag/MWCNTs) were deployed for adorning biogenic-derived AgNPs which were subsequently used in the preparation of thermosensitive hydrogels based on hyaluronic acid encompassing these green-synthesized NPs. The antibacterial capacity of AgNPs decorated on MWCNTs synthesized through Camellia sinensis extract in an organic solvent-free medium displayed a superior activity by inhibiting the growth of Gram-negative (E. coli and Klebsiella) and Gram-positive (S. aureus and E. faecalis). The injectable hydrogel nanocomposites demonstrated good mechanical properties, as well. The thermosensitive hyaluronic acid-based hydrogels also exhibited T<sub>gel</sub> below the body temperature, indicating the transition from liquid-like behavior to elastic gel-like behavior. Such a promising injectable nanocomposite could be applied as liquid, pomade, or ointment to enter wound cavities or bone defects and subsequently its transition in situ to gel form at human body temperature bodes well for their immense potential application in the biomedical sector.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40204-021-00155-6","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40204-021-00155-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 10

Abstract

Injectable materials have shown great potential in tissue engineering applications. However, bacterial infection is one of the main challenges in using these materials in the field of regenerative medicine. In this study, biogenically synthesized silver nanoparticle-decorated multi-walled carbon nanotubes (Ag/MWCNTs) were deployed for adorning biogenic-derived AgNPs which were subsequently used in the preparation of thermosensitive hydrogels based on hyaluronic acid encompassing these green-synthesized NPs. The antibacterial capacity of AgNPs decorated on MWCNTs synthesized through Camellia sinensis extract in an organic solvent-free medium displayed a superior activity by inhibiting the growth of Gram-negative (E. coli and Klebsiella) and Gram-positive (S. aureus and E. faecalis). The injectable hydrogel nanocomposites demonstrated good mechanical properties, as well. The thermosensitive hyaluronic acid-based hydrogels also exhibited Tgel below the body temperature, indicating the transition from liquid-like behavior to elastic gel-like behavior. Such a promising injectable nanocomposite could be applied as liquid, pomade, or ointment to enter wound cavities or bone defects and subsequently its transition in situ to gel form at human body temperature bodes well for their immense potential application in the biomedical sector.

Abstract Image

Abstract Image

Abstract Image

以生物合成的agnps装饰的多壁碳纳米管装饰的可注射透明质酸抗菌水凝胶。
注射材料在组织工程中显示出巨大的应用潜力。然而,细菌感染是在再生医学领域使用这些材料的主要挑战之一。在本研究中,生物合成的银纳米粒子修饰的多壁碳纳米管(Ag/MWCNTs)被用于修饰生物衍生的AgNPs,这些AgNPs随后被用于制备基于透明质酸的热敏水凝胶,这些水凝胶包含这些绿色合成的NPs。在有机无溶剂培养基中,山茶提取物合成的MWCNTs修饰AgNPs的抗菌能力通过抑制革兰氏阴性菌(大肠杆菌和克雷伯氏菌)和革兰氏阳性菌(金黄色葡萄球菌和粪肠球菌)的生长表现出卓越的活性。可注射水凝胶纳米复合材料也表现出良好的力学性能。基于热敏透明质酸的水凝胶也表现出低于体温的凝胶性,表明从液体样行为向弹性凝胶样行为转变。这种有前景的可注射纳米复合材料可以作为液体、润肤膏或软膏应用于伤口腔或骨缺损,随后在人体温度下原位转化为凝胶形式,这预示着它们在生物医学领域的巨大应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Biomaterials
Progress in Biomaterials MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
9.60
自引率
4.10%
发文量
35
期刊介绍: Progress in Biomaterials is a multidisciplinary, English-language publication of original contributions and reviews concerning studies of the preparation, performance and evaluation of biomaterials; the chemical, physical, biological and mechanical behavior of materials both in vitro and in vivo in areas such as tissue engineering and regenerative medicine, drug delivery and implants where biomaterials play a significant role. Including all areas of: design; preparation; performance and evaluation of nano- and biomaterials in tissue engineering; drug delivery systems; regenerative medicine; implantable medical devices; interaction of cells/stem cells on biomaterials and related applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信